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Abstract—Wireless LANs, especially WiFi, have been perva-
sively deployed and have fostered myriad wireless communi-
cation services and ubiquitous computing applications. Indoor
localization is an essential modules of these applications. A
primary concern in designing scenario-tailored application is
to obtain precise estimated distance combatting with harsh
indoor wireless signal propagation issues, particularly mul-
tipath effect. The conventional propagation model based on
received signal strength indicator(RSSI) is easily affected by
temporal and spatial fluctuation due to the multipath effect,
which leads to most of the distance estimation errors in
current indoor localization systems. Intuitively, these positions
in weak multipath effect(WME) conditions, which are slightly
affected by multipath effect, perform better under free space
propagation model. Therefore, the ability to distinguish weak
multipath effect, which is slightly affected by multipath effect
is a key enabler for accurate distance estimation. Enabling
such capabilities on commercial WiFi infrastructure, however,
is difficult due to the coarse multipath resolution with the
MAC layer RSSI. In this paper, we propose a universal precise
distance estimation scheme based on weak multipath effect
identification, leveraging the channel state information(CSI)
from the PHY layer. In our distance estimation system, we
first select positions which are identified as weak multipath
effect conditions. Then we build a free space propagation model
with RSSI to estimate distance between the transmitter and the
receiver, choosing these selected positions. Experimental results
demonstrate that choosing positions in weak multipath effect
conditions can effectively improve the accuracy of distance
estimation in a variety of typical indoor environments.

Keywords-Indoor localization; channel state information;
RSSI; multipath effect;

I. INTRODUCTION

Wireless indoor localization brings about numerous
location-based services in many application fields. Such a
boom of pervasive computing has sorely urged the need
for accurate, robust, and off-the-shelf indoor localization
services. Comparing with outdoor positioning, indoor local-
ization is more challenging, since GPS signals are rarely ac-
cessible. However, room-level and even submeter precision
is often required. Thanks to the ubiquitous deployment of
wireless networks and devices in past two decades, we have
witnessed extensive wireless indoor localization techniques,
such as acoustic signals, ultrasound, FM, infrared, RFID,

Bluetooth, cellular, ZigBee, WiFi, UWB [1]. Recently, the
Received Signal Strength Indicator (RSSI), which character-
izes the attenuation of radio signals during propagation, has
been adopted in a large body of indoor localization systems.

According to the propagation loss model, received signal
power monotonically decreases when the distance from
source is increasing, it is the foundation of the model-based
localization [2]. Most of existing radio frequency (RF)-based
indoor localization methods are based on the RSSI values
[3][4][5][6]. However, utilizing RSSI usually encounters un-
desirable errors in indoor localization. The reasons are from
two respects: First, the RSSI is measured from RF signal
at the per packet level, therefore, it is difficult to obtain a
precise value; Second, the RSSI is volatile because of the
multipath effect. In theory, it is possible to establish a model
to estimate the distance using the received power. However,
the propagation of RF signal is attenuated by reflection when
it hits the surface of an obstacle. As shown in fig 1, in
addition to the Line-Of-Sight(LOS) signal, there are possibly
multiple Non-Line-Of-Sight(NLOS) signals arriving at the
receiver through different paths. Such a multipath effect is
even more serious in indoor environment where a ceiling,
floor, and walls are present. As a result, it is possible for
a closer receiver to obtain a lower RSSI than a further
one. And a simple relationship between received power
and distance cannot be established. Therefore, the multipath
effect causes the main undesirable indoor localization errors.
Conventional RSSI-based method to avoid multipath effect
are from two respects: First, building a complex model to
reduce the error which the multipath effect bring about
utilizing various algorithms [7][8][9], thus it spend extra
time; Second, improving the accuracy of localization by
using fingerprint system [10][11]. However, it needs a lot
of labor to collect data and update fingerprint on time.
Therefore, we aim to build a universal model based on RSSI
without human labor.

We assume that these positions in weak multipath effec-
t(WME) conditions, which are slightly affected by multipath
effect, perform better under free space propagation model.
Therefore, we argue that a WME identification scheme to
improve the accuracy of distance estimation is in need. We



strive to select these positions, which are identified as WME
conditions, to estimate distance between the transmitter and
the receiver. Fortunately, in current widely used orthogonal
frequency division multiplexing(OFDM) systems, where da-
ta is modulated on multiple subcarriers in different frequen-
cies and transmitted simultaneously, there is a value that
estimates the channel in each subcarrier called channel state
information(CSI). Different from RSSI, CSI is a fine-grained
value from the PHY layer which describes the amplitude and
phase on each subcarrier in the frequency domain. There
is only one RSSI in a packet, in contrast, we can obtain
multiple CSIs at a time. In addition, the CSIs over multi-
subcarriers will travel along different fading or scattering
paths on account of the multipath effect. It then naturally
brings in a capacity to multipath effect identification. There-
fore, it is favorable to evaluate multipath effect utilizing
the CSI in typical indoor environments. The CSI values
are already utilized for LOS identification [12][13] and
indoor localization [2][14][15][16]. In conventional distance
estimation system, the RSSI values and the CSI values are
adopted independently. However, due to the multipath ef-
fect, the RSSI values usually fluctuate tempestuously which
results in the main distance estimation error in most of RSSI-
based indoor localization systems. In contrast, the CSI-based
model [2] is environment-related because of its fine-grained
reflection for multipath effect. For example, the path loss
fading exponent n , which evaluates the degree of signal
attenuation in CSI-based model [2], varies very much on
different environments.

In this paper, we aim to design a pervasive universal
precise distance estimation system based on WME iden-
tification in complex indoor scenarios, utilizing RSSI and
CSI with commercial WiFi devices. Since the weak and
strong multipath effect are mutually exclusive, we harness
the hypothsis test framework for statistical weak multipath
effect identification. To capture the distinctions between
weak and strong multipath effect point with off-the-shelf
WiFi infrastructure, we exploit three observations. 1) The
PHY layer information on commercial WiFi devices reveals
multipath channel characteristics at the granularity of OFD-
M subcarriers [18], which is much finer-grained than the
conventional MAC layer RSSI. 2) The distance estimation
error under WME conditions based on free space propa-
gation model is smaller than that under strong multipath
effect(SME) conditions. 3) The ratio between the LOS signal
strength and NLOS signal strength(LNR) is higher under
WME conditions.

We propose a weak multipath effect identification scheme
for commodity WiFi infrastructure. The main contributions
of this work are summarized as follows

• We exploit PHY layer channel state information
to identify the weak multipath effect positions in
multipath-dense indoor scenarios. As far as we know,
this is the first weak multipath effect identification
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Figure 1. An illustration of multipath propagation and LOS/NLOS
conditions.

scheme built upon commercial WiFi infrastructure
without hardware modification leveraging CSI, which
allows pervasive adoption.

• We build a pervasive universal distance estimation
system based on weak multipath effect identification
and validate its performance in various indoor office
environments.

In summary, the multipath effect can be regarded as a pri-
mary characteristic of WiFi channels. We propose a scheme
to identify weak and strong multipath effect conditions as
an enhancement for current 802.11 standards and future
communication protocols, and strive to obtain a precise
distance estimation in various indoor office environments
for indoor localization.

The rest of this paper is organized as follows. System and
implementation are provided in Section II. Then experimen-
tal results and analysis is introduced in Section III. Finally
conclusion and future work is given in Section IV.

II. SYSTEM AND IMPLEMENTATION

In this section, we give an overview of system archi-
tecture. Then we describe the implementation details for
each part of the propose weak multipath effect identification
system.

A. System Architecture

Our system is built based on off-the-shelf WiFi infrastruc-
ture. In addition, no modification is needed at the transmitter
end(TX-the AP), and only two new components are needed
for precise distance estimation which are CSI and RSSI
processing at the receiver end(RX-the target mobile device),
respectively. Fig 2 shows the detailed design of the distance
estimation system architecture.

In our distance estimation system, the CSI values and the
RSSI values will be collected simultaneously at the same
positions. Then the RSSI values with smaller variations can
be obtained through the kalman filter algorithm. Meanwhile,
we obtain the revised CSI by normalization and Inverse
Fast Fourier Transform(IFFT). Note that, commercial NICs



Figure 2. System architecture.

embeds hardware circuts for the FFT and IFFT processing,
our algorithm brings ignorable latency to the entire distance
estimation procedure [2]. Next, features are extracted from
the modified CSI and WME conditions are identified. Final-
ly, these filtered RSSIs, whose collect positions are identified
as WME conditions, will be chosen to estimate distance from
the TX to the RX. It is handled by a propagation model,
which is built on RSSI values off-line. The estimate distance
error is calculated by the AP information and the estimated
distance.

B. Processing

We collect RSSI and CSI at the receiver end, respectively.
To mitigate the temporal fluctuation of RSSI values, we run
the Kalman filter algorithm [17] to revise RSSI values. These
RSSI values with smaller variations will benefit our distance
estimation. We set a sliding window with 10 seconds to
filter RSSI values. To design a practical WME identification
scheme with commodity WiFi infrastructure, we adopt the
recently available PHY layer information. Leveraging the
off-the shelf Intel 5300 NIC and a modified driver, a sampled
version of Channel Frequency Response(CFR) within WiFi
bandwidth is revealed to upper layers in the format of
Channel State Information(CSI) [18]. Each CSI depicts the
amplitude and phase of a subcarrier:

H (fi) =
∥∥H (fi)

∥∥ ej sin∠H(fi) (1)

Where H (fi) is the CSI at the subcarrier with central
frequency of fk, and ∠H (fi) denote its phase [12]. Since
CFR can be converted into Channel Impulse Response(CIR)
via Inverse Fast Fourier Transform(IFFT), an estimation of
CIR with time resolution of 1/20MHz=50ns is exposed.
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Figure 3. CFR and CIR. (a)CFR in outdoor footballfield. (b) CIR in
outdoor footballfield.

we obtain the revised CIR by Inverse Fast Fourier Trans-
form(IFFT). To overcome the drawback of the NIC 5300,
we filtered the CFR samples measured at a time through
selecting the middle 24 subcarriers.

C. Feature extraction

To guarantee a precise WME identification, we extract
suitable features from CSI in frequency domain combining
with the LNR in time domain. Here we present primary
measured data from a typical office building, and focus on
the features for WME identification. We extract features on
outdoor football field which can be considered as a WME
environment.

1) LNR characteristics of CSI : The rationale for LNR
characteristics based WME identification is twofold. (1) For
a particular wireless link, signals transmitted via the LOS
paths (or direct path) always arrive first. (2) The multipath
effect will increase the signal strength on NLOS paths
while the signal strength on LOS path (or direct path)
keeps normal. Prevalent feature metrics include mean and
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Figure 4. Features for WME identification. (a)LNR in outdoor football-
field. (b)filter CFR, variance and skewness in outdoor footballfield.The prior
24 subcarriers are filtered CFRs in frequency domain, two latter subcarriers
are added with ten times variance of filtered CFRs and skewness of filtered
CFRs.

variance, which is approximate to the weighted average and
fluctuation of the LNR.

We extract CSIs from 5000 packets collected in typical
indoor environments, and calculate the corresponding CIRs
via IFFT. Fig 3(a) and fig 3(b) show the CFR and CIR,
respectively. As fig 3(b) shows, the amplitude of first sub-
carrier is much larger than other subcarriers. Therefore, we
approximatively take the first subcarrier of CIRs as LOS
paths(or direct paths) and other NLOS paths. Then the LNR
values are calculated through the amplitude of first subcarrier
divided by sum amplitude of other subcarriers.

Since CSI on current WiFi fails to estimate precise CIR,
the first subcarrier is sometimes mixed with NLOS paths.
Therefore, it is insufficient to distinguish WME conditions
just through LNR values.

2) Channel Frequency Response of CSI : In order to dis-
tinguish WME conditions from SME conditions, we extract
features from Channel Frequency Response of CSI. As fig
3(a) shows, due to the drawback of the NIC 5300, there is a
small falling in the rising and falling edge of CFR, which is
described in the forum at https://github.com/dhalperi/linux-
80211n-csitool-supplementary/issues/28. Therefore we just
choose 24 subcarriers of the CFR in the middle for feature
extraction. Fig 3(a) tells us that the curve of CFR is almost
a horizontal line under WME conditions. Hence we extract
features which can be a mirror of this phenomenon. After
testing many features such as variance, skewness, kurtosis,
we choose two candidates, variance and skewness, for our
WME identification scheme:

a) Variance: In probability theory and statistics, variance
is the expectation of the squared deviation of a random
variable from its mean, and it informally measures how far
a set of (random) numbers are spread out from their mean.
The variance has a central role in statistics. It is used in
descriptive statistics, statistical inference, hypothesis testing,
goodness of fit, Monte Carlo sampling, amongst many
others. As aforementioned, we only extract variance from
24 subcarriers of the CFR in the middle. A small Variance
indicates small variation and thus, a high probability of

WME conditions.
b) Skewness: Skewness is a general metric which de-

scribes the skewed shape of a distribution. Mathematically,
skewness s is define as:

s =
E {x− u}3

σ3
(2)

Where x, u and σ denote the measurement, mean, and
standard deviation, respectively. A positive(negative) skew-
ness indicates that the measured data spreads out to the
right(left) of the sample mean. A small absolute value of
skewness indicates a high probability of WME conditions.
In summary, both small variance and small absolute value of
skewness make sure the curve of CFR close to a horizontal
line which is considered as a WME condition.

D. Multipath identification

Twisty corridors, capsule rooms and scattering furniture
indoor environment often create a labyrinth for radio signals
transmission, where they have to propagate via multiple
intricate NLOS paths. As shown in fig 1, it is common for
the LOS path to be mixed with multiple aliased NLOS paths
(case1), or too harshly attenuated to be perceivable against
the noise floor(case 2). In both conditions, there are possibly
multiple signals arriving at the receiver through different
paths. Hence the weak multipath effect identification prob-
lem is to discern these positions where the signal strength
is lightly influenced by multipath effect.

In the time domain, the multipath channel is modeled as
a temporal linear filter, known as CIR [19] h (τ):

h (τ) =

N∑
i=1

aie
−jθiδ (τ − τi) (3)

where αi, θi and τi are the amplitude, phase and time
delay of the ith path, respectively. N is the total number
of paths and δ (τ) is the Dirac delta function. Then we can
calculate LNR (τ) :

LNR (τ) =
α1δ (τ − τ1)∑N
i=2 αiδ (τ − τi)

(4)

Various statistics depicting the LNR are then utilized as
indicators for WME/SME conditions.

In essence, weak multipath effect identification is aimed
to infer the channel state via certain feature metrics of
the received signals. Fig 4(a) shows the LNR in outdoor
footballfield. And fig 4(b) shows the filtered CFR, variance
and skewness in outdoor footballfield. The CSI samples
reported from the receiver are filtered to eliminate the
impact of transmitting power. The reassembled CFRs are
then converted into CIR using IFFT. The two candidate
frequency features are extracted from CFRs followed by
LNR from CIR. We utilize the LNR to filter most of the SME
conditions. Then the identification procedure is formulated
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Figure 5. Propagation model.

as a statistical hypothesis test with a pre-calibrated threshold
for each of the feature metrics. Given a set of filtered CFR
samples from N packets, the variance and skewness s are
calculated as introduced. We utilize the LNR to filter most of
the SME conditions. Then WME identification is formulated
as a classical binary hypothesis test with WME condition H0

and SME condition H1. For the variance, the hypothesis test
is: {

H0 : V < Vth
H1 : V > Vth

(5)

And for skewness based WME identification,{
H0 : S < Sth
H1 : S > Sth

(6)

Where Vth and Sth represent the corresponding identi-
fication threshold for Variance and skewness, respectively.
The thresholds are pre-calibrated and according to our
measurements, a unified threshold for each metric would fit
various scenarios including different propagation distance,
channel attenuation, and blockage diversity.

E. Propagation model

We use the RSSI values collected on outdoor football field
for free space propagation model. As we known, the free
space propagation model is an ideal model in which the
power loss is only related to distance between the transmitter
and the receiver. It means the multipath effect and other
interferences in indoor environments are ignored. However,
we claim that this outdoor football field is similar to free
space propagation model are from two reasons: First, these
is almost no obstruction between and around the transmitter
end and the receiver end. Second, the artificial grass on this
outdoor football field can scatter the reflected multipath, thus
mitigating the multipath effect to some extent. Therefore we
claim that it is suitable to build a free space propagation
model based on the RSSI values which are collected on
such a outdoor football field. Fig 5 shows the training data

and the fitting result. It is almost a logarithmic decrement
which satisfies the conventional power loss of the free space
propagation model.

III. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we present the experiment setup and the
methodology, followed by detailed performance evaluation
of our distance estimation system in various indoor scenar-
ios.

A. Methodology

We conduct the experiments over two week in typical
office environments including corridors, hall and research
laboratory. The corridors are enclosed with glass wall and
Aluminum alloy plate. The research laboratory are separated
by aluminum alloy plate. For the hall, we collect RSSIs and
CSIs for LOS and around-corner propagation with a maxi-
mum transmitter-receiver distance of 13m every 0.5 meters.
Fig 6 shows the floor plan of testing building for corridors
and research laboratory, we collect RSSIs and CSIs for LOS
and around-corner propagation with a maximum transmitter-
receiver distance of 13m , and measured every 0.5 meters.
For the research laboratory, we select 5 testing locations.
The direct link between a transmitter and a receiver is a clear
LOS path, but also may be blocked by aluminum alloy plate
and through-wall propagation. We collect 5000 packets for
each fair comparison. We also collect RSSIs and CSIs for
LOS propagation every 0.5 meters in four directions(i.e,east,
west, north and south) on outdoor football filed.

During the experiments, two miniPC equipped with Intel
5300 NIC and modified according to [18] is used as the
transmitter and the receiver under a injection-monitor mod-
e as described at https://github.com/dhalperi/linux-80211n-
csitool-supplementary/tree/master/injection. A group of 30
CSIs are extracted from each packet and filtered as in
Section II-B. A TP-LINK wireless router is employed as the
transmitter and a Samsung tablet as the receiver to collect
the RSSI.

We mainly focus on the following metrics to evaluate
our scheme. (1) mean distance estimation error under each
WME condition Ewme: the mean distance estimation error
under the identified WME conditions in each typical office
environments. (2) mean distance estimation error under each
SME condition Esme: the mean distance estimation error
under the identified SME conditions in each typical office
environments. (3) mean distance estimation error under over-
all WME condition AEwme:the mean distance estimation
error under the identified WME conditions in all the typical
office environments. (4) mean distance estimation error
under overall SME condition AEsme: the mean distance
estimation error under the identified SME conditions in all
the typical office environments.



Figure 6. floorplan of the testing building. Serial number from one to seven represent seven testing postions of the TX in corridors and research laboratory.
The red line is the track of the RX.
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Figure 8. Impact of APs position under hall conditions. (a)LNR values:
TX is placed in the center of the hall, RX moves from center to one side
to the other side. (b) LNR values: TX is placed in the corner of the hall,
RX moves from one side to the other side.
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Figure 9. Impact of APs position under corridors conditions. (a)LNR
values: TX is placed in the center of the corrider, RX moves from center
to one side to the other side. (b) LNR values: TX is placed in the corner
of the corrider, RX moves from one side to the other side.

B. Overall Performance

1) WME identification Performance: Fig 7 shows the
direct link between a transmitter and a receiver which is a
clear LOS path, partially blocked by Aluminum alloy plate

and through-wall propagation. For all the five conditions, we
can make a preliminary classification for WME conditions.
These positions such as 6 meters in fig 7(a), 8 meters and 12
meters in fig 7(b), 4.5 meters in fig 7(c) are WME conditions
candidates according to a LNR threshold 5. However, the
LNR values are insufficient for WME identification in some
scenarios such as 10 meters in fig 7(e). To obtain a precise
WME identification, we try to extract suitable features from
CSI on frequency domain combining with the LNR on time
domain. We combine two candidates features, variance and
skewness, for further WME identification. For the variance
feature, we use the optimal threshold of 1. And a absolute
threshold of 0.5 is taken as the ideal value for the skewness
feature. These two threshold also demonstrate that they
are fit for all the conditions in an indoor environment.
These positions are identified as WME conditions where
the variance of CFRs is bigger than 1 and the skewness of
CFRs is bigger than 0.5. Thus, these positions that 6 meters
in fig 7(a), 8 meters in fig 7(b), 4.5 meters in fig 7(c), 3
meters in fig 7(d) and 3 meters in fig 7(e) are identified as
WME conditions. We can see that the distance estimations
are smaller than the average values in all the conditions.

Fig 8 and fig 9 show the direct link between one trans-
mitter and one receiver which are a clear LOS path and a
wall-reflection propagation. These positions that 1.5 meters
in fig 8(a), 1.5 meters in fig 8(b), 2.5 meters in fig 9(a) and
3 meters in fig 9(b) are identified as WME conditions. The
feature thresholds are the same as aforementioned. It can
be seen that the distance estimations are smaller than the
average values in both conditions.

2) Distance estimation error under WME/SME condition-
s: Fig 10 illustrates the mean distance estimation errors un-
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Figure 7. Impact of APs position under research laboratory conditions. As fig 6 shows, the RX travel along the vertical red line. (a)LNR values: TX is
placed in position 1. (b) LNR values: TX is placed in position 2. (c) LNR values:TX is placed in position 3. (d) LNR values: TX is placed in position 4.
(e) LNR values: TX is placed in position 5. (f) 10 times of the variance and skewness of CFRs at 3 meters in fig 7(e). (g) 10 times of the variance and
skewness of CFRs at 10 meters in fig 7(e).

der WME/SME conditions in three different environments.
As shown in fig 10, the AEwme is between 1 and 1.5 meters
which is much less than the AEsme , larger than 4 meters.
It demonstrates that we could obtain a more precise distance
estimation through WME identification. The Ewme is about
1.8 meters, 0.6 meters and 1.3 meters in there different
indoor environments. In contrast, the Esme is about 4.1
meters, 4.5 meters and 4.4 meters in there different indoor
environments. It demonstrates that the improvement for dis-
tance estimation through WME identification is effective to
different indoor environments. In addition, the gap between
three Ewme is larger it between three Esme. The reason is
that the degree of WME in the hall is smaller than it in the
corridors and in the research laboratory. In contrast, there is
not obvious influence caused by different degree of SME.
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Figure 10. distance estimation error under WME/SME conditions.

3) Impact of AP’s position: As fig 7 shows, the WME
identification system work well in 5 testing locations and



there is not a big gap between the distance estimation error
when the AP is placed in different position. It demonstrates
that our WME identification system is location-independent
to some extent.

IV. CONCLUSION

In this paper, we conduct the experiments in typical office
environments including corridors, hall and research labo-
ratory to illustrate effectiveness of our distance estimation
system. The future research in the new and largely open
areas of wireless technologies can be carried out along
the following directions. First, we can leverage the CSI
to quantize the degree of the WME and filter the RSSI
values under SME conditions for precise distance estimation.
Second, we can build a universal CSI-based model for
distance estimation, which is suitable for all the indoor
environments.
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