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1. Introduction
Visual domain adaptation aims to learn robust classifiers for the target domain by leveraging knowl-
edge from a source domain. Existing methods are facing two significant challenges:

• Degenerated feature transformation: feature distortion often happens; subspace learning is not
sufficient to reduce the distribution divergence.

• Unevaluated distribution alignment: existing methods fail to evaluate the different importance
of marginal and conditional distributions.

Our method: Manifold Embedded Distribution Alignment (MEDA)

f = arg min
f∈
∑n

i=1
HK

`(f(g(xi)), yi) + η||f ||2K + λDf (Ds,Dt) + ρRf (Ds,Dt)

MEDA learns a domain-invariant classifier in Grassmann manifold with structural risk minimiza-
tion, while performing dynamic distribution alignment to quantitatively account for the relative
importance of marginal and conditional distributions.

2. Our Method: MEDA
Manifold Embedded Distribution Alignment
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• G: Manifold feature learning
• µ: Dynamic distribution alignment
• f : Prediction function
• Rf : Manifold regularization

MEDA works in both traditional and deep
frameworks.

2.1 Manifold Feature Learning
We adopted Geodesic Flow Kernel (GFK) [1]
as the basic manifold learning method. GFK
tries to model the domains with d-dimensional
subspaces and then embed them into G. Each
original subspace can be seen as a point in G.
Therefore, the geodesic flow {Φ(t) : 0 ≤ t ≤ 1}
between two points can draw a path for the two
subspaces. If we let Ss = Φ(0) and St = Φ(1),
then finding a geodesic flow from Φ(0) to Φ(1)
equals to transforming the original features into
an infinite-dimensional feature space.
The new features can be represented as z =
g(x) = Φ(t)T x. The inner product of trans-
formed features zi and zj gives rise to a positive
semidefinite geodesic flow kernel:

〈zi, zj〉 =
∫ 1

0
(Φ(t)T xi)T (Φ(t)T xj) dt = xT

i Gxj

2.2 Dynamic Distribution Alignment
The Dynamic Distribution Alignment (DDA)
is to tackle with the unevaluated distribution align-
ment challenge. The core is an adaptive factor to
dynamically leverage the importance of marginal and
conditional distributions. The DDA Df is formed by
linear combination of two distributions:

Df (Ds,Dt) = (1− µ)Df (Ps, Pt) + µ

C∑
c=1

D
(c)
f (Qs, Qt)

where µ ∈ [0, 1] is the adaptive factor and c ∈ {1, · · · , C} is the class indicator. Df (Ps, Pt) denotes
the marginal distribution alignment, and D(c)

f (Qs, Qt) denotes the conditional distribution alignment
for class c.
Taking the projected MMD, dynamic distribution alignment can be expressed as

Df (Ds,Dt) = (1− µ)‖E[f(zs)− E[f(zt)]‖2
HK

+ µ
C∑

c=1
‖E[f(z(c)

s )]− E[f(z(c)
t )]‖2

HK

The first quantitative calculation of µ:

µ̂ ≈ 1− dM

dM +
∑C

c=1 dc

, dM : marginal A-distance,dc : conditional A-distance [3]
2.3 Learning

Using the representer theorem [2], f becomes

f(z) =
n+m∑
i=1

βiK(zi, z)

where β = (β1, β2, · · · )T ∈ R(n+m)×1 is the co-
efficients vector and K is a kernel.
f can be reformulated as

f = arg min
f∈HK

||(Y− βT K)A||2F + η tr(βT Kβ)

+ tr
(
βT K(λM + ρL)Kβ

)
Setting ∂f/∂β = 0, we obtain the solution

β? = ((A + λM + ρL)K + ηI)−1AYT

It shows that MEDA can directly learn the la-
bels of the target domain, rather than train an-
other classifier.

3. Experiments
On Office31, Office-Caltech10, USPS, MNIST, ImageNet, and VOC2007 datasets, MEDA shows:
• Over 3.5% improvement in classification accuracy
• Over 11.6% of error reduction
• Over 50.0% drop of standard deviation

With regards to the different importance of marginal and conditional distributions:
• There does exist different importance between these two distributions (µ)
• MEDA can provide an accurate, even better calculation of µ compared to gridsearch
• DDA can also be included in the deep transfer learning frameworks
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