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The breakthrough of AI

https://openai.com/dall-e-2/#demos



Artificial intelligence



Background

 Computer vision: How do we represent an image?



Artificial intelligence?

 More artificial, more intelligence…

Figure credit: https://cn.nytimes.com/technology/20181126/china-artificial-intelligence-labeling/

https://cn.nytimes.com/technology/20181126/china-artificial-intelligence-labeling/


Background

 Models do not generalize well to new domains; not like humans!

 Are big data always available?

 It is impossible to consider data in all scenarios.

 Data can be protected under privacy regulation.

• Pan et al. A Survey on Transfer Learning. IEEE TKDE 2010.
• Wang et al. Generalizing to unseen domains: a survey on domain generalization. IEEE TKDE 2022.



Domain adaptation

 DA: Train on source and adapt to target

ImageNet CIFAR-100



Sample Re-weighting 

[Huang,NIPS’06]

Subspace Learning 

[Fernando, ICCV’13]

Adversarial Learning [Ganin, ICML’15, Tzeng, CVPR’17]

Domain adaptation



Domain adaptation: Train on Source and Adapt to Target

ImageNet CiFAR100
Are we able to obtain 

unlabeled testing data?



Domain adaptation: Train on Source and Adapt to Target

ImageNet CiFAR100

NO!

Real-time deployment

Data privacy regulation



Domain Generalization

 DG: Build a system for previously unseen datasets given one or 

multiple training datasets.

Wang et al. Generalizing to unseen domains: a survey on domain generalization. IEEE TKDE 2022.

Model

Seen domains Unseen

Train Test



Formal definition of domain generalization

 Definition

 Given: 𝑀 training domains 𝒮 = 𝒮𝑖 𝑖 = 1,⋯ ,𝑀}, where 𝒮𝑖 = 𝑥𝑗
𝑖, 𝑦𝑗

𝑖

𝑗=1

𝑛𝑖

 Condition: 

 Joint distributions are different, i.e., 𝑃𝑋𝑌
𝑖 ≠ 𝑃𝑋𝑌

𝑗
, 1 ≤ 𝑖 ≠ 𝑗 ≤ 𝑀

 Test domain cannot be accessed in training

 Goal:

 Achieve minimum test error on test domain

 (𝑃𝑋𝑌
𝑖 ≠ 𝑃𝑋𝑌

𝑡𝑒𝑠𝑡)

Wang et al. Generalizing to unseen domains: a survey on domain generalization. IEEE TKDE 2022.



Different DG settings

 Different DG settings

Setting Situation

Traditional domain generalization The traditional setting

Single-source domain generalization Only 1 source domain available for training

Semi-supervised domain generalization Training domains are partially labeled

Federated domain generalization Training data cannot be accessed by central server

Open domain generalization Training and test domains have different label spaces

Unsupervised domain generalization Training domains are totally unlabeled

• Peng X, Qiao F, Zhao L. Out-of-domain Generalization from a Single Source: A Uncertainty Quantification Approach[J]. arXiv preprint 

arXiv:2108.02888, 2021.

• Lin L, Xie H, Yang Z, et al. Semi-Supervised Domain Generalization in Real World: New Benchmark and Strong Baseline[J]. arXiv preprint 

arXiv:2111.10221, 2021.

• Zhang L, Lei X, Shi Y, et al. Federated Learning with Domain Generalization[J]. arXiv preprint arXiv:2111.10487, 2021.

• Shu Y, Cao Z, Wang C, et al. Open domain generalization with domain-augmented meta-learning. CVPR 2021.

• Qi L, Wang L, Shi Y, et al. Unsupervised Domain Generalization for Person Re-identification: A Domain-specific Adaptive Framework[J]. arXiv

preprint arXiv:2111.15077, 2021.

The general setting;

Focus of this tutorial



Relation with existing paradigms

DG has close relationship with other paradigms, but also different from them

Wang et al. Generalizing to unseen domains: a survey on domain generalization. IEEE TKDE 2022.



Overview of this tutorial

Introduction of DG & related areas

Methodology

Applications

Datasets, benchmark & evaluation

Theory & challenges



Introduction of DG & related areas

Methodology
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Datasets, benchmark & evaluation

Theory & challenges



Overview of DG methodology

Wang et al. Generalizing to unseen domains: a survey on domain generalization. IEEE TKDE 2022.

Data 
manipulation

Data augmentation
Domain randomization

Adversarial data augmentation

Data generation

Representation 
learning

Domain-invariant 
representation learning

Kernel methods

Explicit feature alignment

Domain-adversarial learning

Invariant risk minimization

Feature disentanglement

Multi-component analysis

Generative modeling

Causality-inspired methods

Learning 
strategy

Meta-learning

Ensemble learning

Gradient operation

Distributionally robust optimization

Self-supervised learning

Others
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Data manipulation for DG



Data manipulation

 Data quantity and quality are key factors of generalization
 Increase quality and quantity

Data augmentation

Data generation



Data augmentation

 Typical augmentation
 Rotation, noise, color…

 Domain randomization (DR)
 Randomly draw K real-life categories from ImageNet for stylizing the synthetic images.

Yue et al. Domain Randomization and Pyramid Consistency: Simulation-to-Real Generalization without Accessing Target Domain Data. ICCV,2019.



Domain randomization 

• Tobin, et al. Domain Randomization for Transferring Deep Neural Networks from Simulation to the Real World. IROS 2017.
• Tremblay et al. Training Deep Networks with Synthetic Data: Bridging the Reality Gap by Domain Randomization. CVPR workshop 2018.

Sim->Real robot control Synthetic images -> Real images

Domain randomization through graphics software.



Context-aware randomization

Prakash et al. Structured Domain Randomization: Bridging the Reality Gap by Context-Aware Synthetic Data. 2018.



Adversarial data augmentation

 CrossGrad: Adversarially augment data via gradient training
 Generate data that are with same label 𝑦, but different domain label 𝑑

 ADV augmentation
 Learning the worse-case distribution to enable generalization

• Shankar et al. Generalizing across Domains via Cross-Gradient Training. ICLR 2018.
• Volpi, et al. Generalizing to Unseen Domains via Adversarial Data Augmentation. NeurIPS 2018.



Data generation

 Directly generate data
 Learning to generate, instead of randomization / adversarial augmentation (Fixed scheme)

• Kingma D P, Welling M. Auto-encoding variational bayes[J]. arXiv preprint arXiv:1312.6114, 2013.

• Goodfellow I, Pouget-Abadie J, Mirza M, et al. Generative adversarial nets[J]. Advances in neural information processing systems, 2014, 27.

• Zhang H, Cisse M, Dauphin Y N, et al. Mixup: Beyond empirical risk minimization[J]. arXiv preprint arXiv:1710.09412, 2017.

Variational auto-encoder (VAE) Generative adversarial net (GAN) Mixup



Data generation

VAE for generation Multi-component generation

Conditional GAN for generation
Image stylization

• Qiao et al. Learning to Learn Single Domain Generalization. CVPR 2020.
• Rahman et al. Multi-component Image Translation for Deep Domain Generalization. 2020.
• Zhou et al. Learning to Generate Novel Domains for Domain Generalization. ECCV 2020.
• Somavarapu et al. Frustratingly Simple Domain Generalization via Image Stylization. 2020.



Mixup

• Wang et al. DomainMix: Learning Generalizable Person Re-Identification Without Human Annotations. 2020.
• Wang et al. Heterogeneous domain generalization via domain mixup. ICASSP 2021.

• Zhou et al. Domain generalization with mixstyle. ICLR 2021.

DomainMix
Style MixupMixAll



Lu et al. Semantic-Discriminative Mixup for Generalizable Sensor-based Cross-domain Activity Recognition. ACM IMWUT, 2022.

Semantic range

Discrimination

Data generation for DG

 Is vanilla Mixup enough for DG?
 No. 

 Consider semantic range. 

 We also need a large margin.

 SDMix: Semantic-Discriminative Mixup.



Summary of data manipulation

 Advantages
 Easy to understand and simple to implement

 General to all kinds of data and networks

 Potential disadvantages
 Lack of theoretical guarantee

 Restricted by quality of training data



Representation learning for DG



Representation Learning

 Learning domain-invariant representations
 Learning features which are expected to be better generalized to unseen target domain. 

Classifier Feature Regularization



Representation learning

 How to learn generalized representations for DG?

• Kernel-based methods

• Domain adversarial learning

• Explicit feature alignment

• Invariant risk minimization



Kernel-based methods

 Using kernel methods to learn domain-invariant features
 DICA: domain-invariant component analysis

 TCA: Transfer Component Analysis

• Blanchard et al. Generalizing from Several Related Classification Tasks to a New Unlabeled Sample. NeurIPS 2011.

• Muandet et al. Domain Generalization via Invariant Feature Representation. ICML 2013.

• Grubinger et al. Domain Generalization Based on Transfer Component Analysis. IWANN 2015. 



Kernel-based methods

 Marginal distribution adaptation
 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝐷𝑠, 𝐷𝑡 ≈ 𝑀𝑀𝐷 𝑃𝑠 𝑥 , 𝑃𝑡 𝑥 , 𝑓

= sup
𝑓∈ℱ

𝔼𝑃
1

𝑚
σ𝑖=1
𝑚 𝑓(𝑥𝑖) −

1

𝑛
σ𝑗=1
𝑛 𝑓(𝑦𝑗)

 (raw version)     = tr(𝐀𝐓𝐗𝐌𝐗𝐓𝐀)

 (kernel version)  = tr(𝐊𝐌)
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𝐾 =
𝐾𝑠,𝑠, 𝐾𝑠,𝑡
𝐾𝑡,𝑠, 𝐾𝑡,𝑡

𝑀𝑖,𝑗 =

1

𝑚2
, 𝑥𝑖 , 𝑥𝑗 ∈ 𝐷𝑠

1

𝑛2
, 𝑥𝑖 , 𝑥𝑗 ∈ 𝐷𝑡

−1

𝑚𝑛
, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝐗 = 𝐗𝑠, 𝐗𝑡 ∈ ℝ𝑑×(𝑚+𝑛), 𝐀 ∈ ℝ 𝑚+𝑛 × 𝑚+𝑛

[1] Pan et al. Domain adaptation via transfer component analysis. IEEE TNN 2011.

min tr(𝐊𝐌) − 𝜆 tr(𝐊)



Kernel-based methods

 More than just distribution adaptation
 ESRand: Elliptical Summary Randomisation (ESRand) 

 comprises of a randomised kernel and elliptical data summarization

 projected each domain into an ellipse to represent the domain information and then used some similarity metric to 

compute the distance. 

 SCA: scatter component analysis
 Adopted Fisher’s discriminant analysis to minimize the discrepancy of representations from the same class and the same 

domain, and maximize the discrepancy of representations from the different classes and different domains

• Erfani S, Baktashmotlagh M, Moshtaghi M, et al. Robust domain generalisation by enforcing distribution invariance. AAAI 2016.
• Ghifary et al. Scatter Component Analysis: A Unified Framework for Domain Adaptation and Domain Generalization. TPAMI 2017.



Explicit feature alignment

 Explicit distance: 𝑅(⋅,⋅) ≈ 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝐷𝑠, 𝐷𝑡)

 Goal: 𝑓∗ = arg𝑚𝑖𝑛𝑓
1

𝑚
σ𝑖=1
𝑚 𝐿(𝑓 𝑥𝑖 , 𝑦𝑖) + 𝜆 ⋅ 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝐷𝑠, 𝐷𝑡)

 Kernel-based distance

 Maximum mean discrepancy (MMD) [1]

 KL-divergence

 Cosine similarity

 Geometrical distance

 Geodesic flow kernel (GFK) [2] 

 Correlation alignment (CORAL)[3]

 Riemannian manifold [4]

35

[1] Pan et al. Domain adaptation via transfer component analysis. IEEE TNN 2011.

[2] Gong et al. Geodesic flow kernel for unsupervised domain adaptation. CVPR 2012.

[3] Sun et al. Return of frustratingly easy domain adaptation. AAAI 2016.

[4] Baktashmotlagh et al. Domain adaptation on statistical manifold. CVPR 2014.



Explicit distance

 Maximum mean discrepancy (MMD)

 Given 𝑥 ∼ 𝑃, 𝑦 ∼ 𝑄, 𝑓 is a feature map: 𝑥 → ℋ, where ℋ is reproducing kernel 
Hilbert space (RKHS), then

𝑀𝑀𝐷 𝑃,𝑄, ℱ ≔ sup
𝑓∈ℱ

𝔼𝑃 𝑓 𝑥 − 𝔼𝑄 𝑓 𝑦

 Empirical estimate

𝑀𝑀𝐷 𝑃,𝑄, ℱ ≔ sup
𝑓∈ℱ

𝔼𝑃
1

𝑚
σ𝑖=1
𝑚 𝑓(𝑥𝑖) −

1

𝑛
σ𝑗=1
𝑛 𝑓(𝑦𝑗)
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Theorem:  𝑀𝑀𝐷 𝑃,𝑄, 𝐹 = 0 𝑖𝑓𝑓 𝑃 = 𝑄, when ℱ = 𝑓 ||𝑓||ℋ ≤ 1} is a unit ball in a 

RKHS, provided that ℋ is universal. [1]

[1] Alexander J. Smola. Maximum mean discrepancy. ICONIP 2016, Hong Kong. http://alex.smola.org/teaching/iconip2006/iconip_3.pdf



Explicit feature alignment

 Learning shareable information across domain
 Maximum mean discrepancy:

 KL Divergence:

 Correlation alignment: 

• Ya Li, et al., Deep domain generalization via conditional invariant adversarial networks, ECCV 2018

• Haoliang Li, et al., Domain Generalization for Medical Imaging Classification with Linear-Dependency, NeurIPS, 2020

• Jin X, Lan C, Zeng W, et al. Style Normalization and Restitution for Domain Generalization and Adaptation, Arxiv, 2021.



Multi-layer Feature Learning

 Feature disentanglement at deep layer.

 Neuron independence regularization

𝑃 𝐻1, 𝐻2, … , 𝐻𝑑′ = 𝑃 𝐻1 𝑃 𝐻2 …𝑃(𝐻𝑑)

Total Correlation Minimization 

through dimension permutation 

[Arcones1992]

[Arcones1992] M. A. Arcones and E. Gine, “On the bootstrap of u and v statistics,” The Annals of Statistics, pp. 

655–674, 1992.



Domain-adversarial training

 Implicit distance: 𝑅(⋅,⋅) ≈ 𝑆𝑒𝑝𝑎𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝐷𝑠, 𝐷𝑡)

 Goal: 𝑓∗ = arg𝑚𝑖𝑛𝑓
1

𝑚
σ𝑖=1
𝑚 𝐿(𝑓 𝑥𝑖 , 𝑦𝑖) + 𝜆 ⋅ 𝑆𝑒𝑝𝑎𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝐷𝑠, 𝐷𝑡)

 How to measure 𝑆𝑒𝑝𝑎𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝐷𝑠, 𝐷𝑡)?
 Domain discriminator in generative adversarial nets (GAN) [1]

 Objective: ℓadv = 𝔼𝑧~𝑃 𝑧 log (1 − 𝐷 𝐺 𝑧 ) + 𝔼𝑥~𝑃img 𝑥 log 𝐷(𝑥)

 Train: min
𝐺

max
𝐷

ℓadv

 How to use GAN for transfer?

39

[1] Ganin et al. Unsupervised domain adaptation by backpropagation. ICML 2015.

Figure: https://becominghuman.ai/generative-adversarial-networks-gans-human-creativity-2fc61283f3f6

https://becominghuman.ai/generative-adversarial-networks-gans-human-creativity-2fc61283f3f6


GANs

 Generative adversarial nets
 GAN -> transfer learning -> domain generalization

40

GAN GAN-based DA GAN-based DG

Real faces

Random noise

Generator

Discriminator Discriminator Discriminator

Target domain

Source domain

Generator

Figure: https://medium.com/sigmoid/a-brief-introduction-to-gans-and-how-to-code-them-2620ee465c30

Domain 1

Domain 2…

Generator

https://medium.com/sigmoid/a-brief-introduction-to-gans-and-how-to-code-them-2620ee465c30


DANN

 Domain adversarial neural network (DANN)[1]

 Feature extractor: 𝐺𝑓(⋅; 𝜃𝑓)

 Label predictor: 𝐺𝑦(⋅; 𝜃𝑦)

 Domain classifier: 𝐺𝑑(⋅; 𝜃𝑑)

41

Figure: Ganin et al. Unsupervised domain adaptation by backpropagation. ICML 2015.



DANN

 Training of DANN
 Objective: 

 Learning:

 Minimize feature extraction and classification loss

 Maximize domain confusion

 Stochastic gradient descent

 Problem: 𝜆 is hard to implement in SGD

42

Classification loss Separation loss



DANN

 Train DANN in SGD
 Gradient reversal layer (GRL)

 Forward propagation: GRL is an identity map

𝑅𝜆 𝑥 = 𝑥

 Backward propagation: take gradient from subsequent level, and × (−𝜆)

𝑑𝑅𝜆
𝑑𝑥

= −𝜆𝐈

 Transformed objective function:

 GRL can be easily implemented in Pytorch/Tensorflow/Caffe…

43

+
Code of DANN: http://github.com/jindongwang/transferlearning/code/deep/DANN

http://github.com/jindongwang/transferlearning/code/deep/DANN


Domain-adversarial learning for DG

• Haoliang Li et al. Domain Generalization with Adversarial Feature Learning. CVPR 2018.
• Rui Gong et al. DLOW: Domain Flow for Adaptation and Generalization. CVPR 2019.

MMD-AAE

DLOW



Lu et al. Local and global alignments for generalizable sensor-based human

activity recognition. ICASSP 2022.

Data of walking activity

Global feature learning

Domain-adversarial learning for DG

 Is local alignment enough for DG?
 No. Ignore some big picture features.

 We also need a global alignment.

 LAG: Local and Global Alignment.



Lu et al. FIXED: Frustratingly Easy Domain Generalization with Mixup. Under Review, 2022.
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Representation augmentation for DG

 Is vanilla Mixup or simple alignment enough?
 No. Domain-invariant feature Mixup. 

 FIXED: Domain-invariant Feature MIXup with Enhanced Discrimination.

Enlarged distribution cover range



Invariant risk minimization

 IRM
 Do not seek to match the representation distribution of all domains, but to enforce the 

optimal classifier on top of the representation space to be the same across all domains

 The intuition is that the ideal representation for prediction is the cause of y, and the causal 

mechanism should not be affected by other factors/mechanisms, thus is domain-invariant.

Learn 𝑔

Arjovsky M, Bottou L, Gulrajani I, et al. Invariant risk minimization[J]. arXiv preprint arXiv:1907.02893, 2019.



Feature disentanglement

 What is disentanglement
 Learn a function that maps a sample to a feature vector, which contains all the information 

about different factors of variation and each dimension (or a subset of dimensions) contains 

information about only some factor(s).

 Formulation

• Multi-component analysis

• Generative modeling

Common features Specific features

Reconstruction error

Feature disentanglement



Multi-component analysis

 UndoBias
 Weights can be disentangled into: common and specific weights

 Structure low-rank DG

• Khosla A, Zhou T, Malisiewicz T, et al. Undoing the damage of dataset bias. ECCV 2012.

• Ding Z, Fu Y. Deep domain generalization with structured low-rank constraint. IEEE TIP 2017.



Feature disentanglement

Invariant feature learning + style transfer

Yufei Wang, et al., Variational Disentanglement for Domain Generalization, Arxiv 2021



 Deep features eventually transit from general to specific along the network.

 Shallow Layer extracts shareable information while deep layer extracts category specific 

information (with regularization). 

…

Cat

• Haoliang Li, et.al., “GMFAD: Towards Generalized Visual Recognition via Multi-Layer 

Feature Alignment and Disentanglement”, T-PAMI 2020

Multi-layer Feature Learning



Domain-Invariant Learning with Uncertainty

• Uncertainty should be considered during domain-invariant learning. 

• Zehan Xiao, et al., A Bit More Bayesian: Domain-Invariant Learning with Uncertainty , ICML’21

• Xiaotong Li, et al., Uncertainty Modeling for Out-of-Distribution Generalization." ICLR’22.

Bayesian Neural Network Uncertainty modeling through re-parameterization trick



Generative modeling

 DIVA: domain-invariant variational-autoencoder

 CSG: Causal semantic generative model

• Liu et al, Learning Causal Semantic Representation for Out-of-Distribution Prediction. NeurIPS 2021.

• Ilse M, Tomczak J M, Louizos C, et al. Diva: Domain invariant variational autoencoders[C]//Medical Imaging with Deep Learning. 

PMLR, 2020: 322-348.

S: semantic factor

V: variation factor

Domain-input-label



Summary of representation learning

 Advantages
 General and popular

 Better performance

 Some theoretical guarantee

 Potential disadvantages
 Still difficult to remove spurious features

 Data-driven



Learning strategy for DG



Different learning strategy for DG

 Meta-learning
 Divide domains into several tasks, then use meta-learning to learn general knowledge

 Ensemble learning
 Design ensemble models

 Gradient operation
 Alter the gradient interaction between domains

 Distributionally robust optimization
 Acquire models that are better for worst-case distribution scenario

 Self-supervised learning

 Others



Meta-learning

 Learning to learn, or meta-learn the general knowledge
 Instead of the original tasks, meta-learning wants to acquire knowledge about new tasks

Meta-knowledge acquisition Meta-knowledge validation

Huisman M, Van Rijn J N, Plaat A. A survey of deep meta-learning[J]. Artificial Intelligence Review, 2021, 54(6): 4483-4541.



Meta-learning for DG

• Li D, Yang Y, Song Y Z, et al. Learning to generalize: Meta-learning for domain generalization. AAAI 2018.

• Balaji Y, Sankaranarayanan S, Chellappa R. Metareg: Towards domain generalization using meta-regularization. NeurIPS 2018.

 How to adopt meta-learning for DG?
 Key: Old tasks to new tasks in meta-learning → Old domains to new domains

 MLDG: Meta-learning for DG

 MetaReg: meta-learning for regularization



Meta-learning for DG

 Feature-critic training
 Learning the regularization terms using 

meta-learning

 Meta-VIB
 Meta variational information bottleneck to 

model uncertainty between domain shifts

Li Y, Yang Y, Zhou W, et al. Feature-critic networks for heterogeneous domain generalization. 

ICML 2019.

Du Y, Xu J, Xiong H, et al. Learning to learn with variational information bottleneck for domain 

generalization. ECCV 2020.



Meta-learning for DG

 DADG: MLDG with adversarial training

• Chen K, Zhuang D, Chang J M. Discriminative adversarial domain generalization with meta-learning based cross-domain 

validation. Neurocomputing 2022.

• Sharifi-Noghabi H, Asghari H, Mehrasa N, et al. Domain generalization via semi-supervised meta learning[J]. arXiv preprint 

arXiv:2009.12658, 2020.

 DGSML: MLDG with semi-supervised 

learning



Ensemble learning

 Is a single model or representation enough for generalization?

Linear

Regression

K nearest

Neighbors

Decision

Tree

Neural

Network

Acc: 80% Acc: 85% Acc: 91% Acc: 90%

Linear

Regression

K nearest

Neighbors

Decision

Tree

Neural

Network

Ensemble

Model

Acc: 98%
Ensemble 

Models

Bagging Boosting Stacking

• Ensemble learning allows for 

more diversities in feature and 

classifier learning

• The power from the crowd



Ensemble learning for DG

 Ensemble-learned DG representations
 Feature weighting Feature combination Feature attention

• Mancini M, Bulo S R, Caputo B, et al. Best sources forward: domain generalization through source-specific nets. ICIP 2018.

• Segu M, Tonioni A, Tombari F. Batch normalization embeddings for deep domain generalization[J]. arXiv preprint arXiv:2011.12672, 2020.

• D’Innocente A, Caputo B. Domain generalization with domain-specific aggregation modules[C]//German Conference on Pattern Recognition. 

Springer, Cham, 2018: 187-198.



Ensemble learning for DG

 Ensemble learning for classifier learning
 SEDGE: ensemble of pre-trained models for classifier learning

Li Z, Ren K, Jiang X, et al. Domain Generalization using Pretrained Models without 

Fine-tuning[J]. arXiv preprint arXiv:2203.04600, 2022.

Zhou K, Yang Y, Qiao Y, et al. Domain adaptive ensemble learning[J]. IEEE TIP 

2021.

DAEL: domain adaptive ensemble learning



Ensemble learning for DG

 Is ensemble learning enough for DG?
 No. Ensemble → domain-specific knowledge

 We also need a balance with domain-invariant knowledge

 AFFAR: Adaptive Feature Fusion

Domain-specific features

+Domain-invariant features

Qin et al. Domain generalization for activity recognition via adaptive 

feature fusion. ACM TIST 2022.



Gradient operation for DG

 Model the interactions between cross-domain gradients

Fish: gradient inner product

• Shi Y, Seely J, Torr P H S, et al. Gradient matching for domain generalization. ICLR 2022.

• Huang Z, Wang H, Xing E P, et al. Self-challenging improves cross-domain generalization. ECCV 2020.

RSC: self-challenging for gradient



Self-supervised learning for DG

 Construct pretext tasks for general representation learning

• Carlucci F M, D'Innocente A, Bucci S, et al. 

Domain generalization by solving jigsaw puzzles. 

CVPR 2019.

• Kim D, Yoo Y, Park S, et al. Selfreg: Self-

supervised contrastive regularization for domain 

generalization. ICCV 2021.

Self-supervised learning

JiGen: Jigsaw puzzle + DG

Selfreg: self-supervised contrastive loss



Contrastive Learning

• Motiian, et al., Unified Deep Supervised Domain Adaptation and Generalization, ICCV’17

• Dou, et al., Domain Generalization via Model-Agnostic Learning of Semantic Features, NeurIPS’19

Minimizing/Maximizing feature distance among samples from with same/different 

category information from different domains



GroupDRO: Convex hull + 
Regularization

VRex: Convex hull + Perturbation + Risk 
variance

• S. Sagawa, P. W. Koh, T. B. Hashimoto, and P. Liang, “Distributionally robust neural networks for group shifts: On the importance of regularization for worst-case 
generalization,” in ICLR, 2020.

• D. Krueger, E. Caballero, J.-H. Jacobsen, A. Zhang, J. Binas, D. Zhang, R. Le Priol, and A. Courville, “Out-of-distribution generalization via risk extrapolation (rex),” in ICML, 
2021, pp. 5815–5826.

Distributionally robust optimization for DG

 Learn a model at worst-case distribution scenario



Other learning strategy

 Other interesting learning strategy for DG

Shapelet feature: invariant across domains SWAD: Smooth training loss

• Narayanan M, Rajendran V, Kimia B. Shape-biased domain generalization via shock graph embeddings. ICCV 2021.

• Cha J, Chun S, Lee K, et al. Swad: Domain generalization by seeking flat minima. NeurIPS 2021.
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Applications for DG

 Wide applications across CV, NLP, RL, and others

Figure credit: DG survey by Wang et al. (TKDE’22)



Wide applications of DG

 Computer vision
Image classification

Style transfer

Semantic segmentation

Action recognition

Test

Person ReID



Wide applications of DG

 Natural language processing

 Reinforcement learning

DVD Book Kitchen appliance Electronic device

Train Test

Sentiment classification

Semantic parsing

Sim-to-real

Robot

control



Wide applications of DG

 Medical applications

COVID X-ray classification Tissue segmentation

Parkinson’s disease diagnosis



Wide applications of DG

 Sensor-based human activity recognition
 Create a model that learns generalizable representations for different age groups

 Different people/device locations/activity patterns generate different sensor readings

• Lu et al. Local and global alignments for generalizable sensor-based 

human activity recognition. ICASSP 2022.

• Lu et al. Semantic-discriminative mixup for Generalizable Sensor-based 

Cross-domain Activity Recognition. ACM IMWUT 2022.



Wide applications of DG

 Time series forecasting
 AdaRNN: adaptive forecasting of time series using DG

Raw data

Probability 

distribution

B

𝑷𝑨 ≠ 𝑷𝑩 ≠ 𝑷𝑪 ≠ 𝑷𝑻𝒆𝒔𝒕Temporal Covariate Shift:

?

A

𝑷𝑨
𝑷𝑩 𝑷𝑪

𝑷𝑻𝒆𝒔𝒕

Unseen testC

𝑡

Du et al. AdaRNN: adaptive learning and forecasting of time series. CIKM 2021.
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Benchmarks for DG

 Important consideration for DG benchmarks:

 Popular datasets

 Common benchmarks and codebases

 Evaluation strategy: model selection

Note:

• Technically, any application settings that fits in DG scenario can be 

considered as a good test bed.

• There exists no “golden-standard” for benchmarking and evaluation.

d

Which dataset? Which codebase? Which metric?



Datasets for DG

 Common benchmarks



Benchmark and codebase

 DomainBed
 A unified benchmark for domain generalization

https://github.com/facebookresearch/DomainBed

Interesting results: DomainBed found that there are not significant 

improvements for recent DG algorithms. Is it the case?

https://github.com/facebookresearch/DomainBed


Benchmark and codebase

 DeepDG
 Built by borrowing the knowledge from DomainBed, but faster, and easier to use

https://github.com/jindongwang/transferlearning/tree/master/code/DeepDG

• Avoids huge hyperparameter tuning

• More friendly interface

• Better customization

https://github.com/jindongwang/transferlearning/tree/master/code/DeepDG


Model selection

 Model selection in DomainBed
 Test-domain validation set (oracle)

 Use part of test domain as the validation

 Leave-one-domain-out cross-validation

 One domain as testing domain for validation

 Training-domain validation set (popular)

 Leave some part of the training data as the validation set

𝒟2𝒟1 𝒟3 𝒟4

Train

Validation

Test

Assume 𝒟4 is the 

unseen test domain 

• Q: is it reasonable to use training-domain validation 

for model selection? 

• A: no. Since the validation distribution cannot 

represent the test distribution.



Discussion about the performance of DG

 Performance should be restricted to certain applications
 Cross-dataset human activity recognition[1]

 Cross-dataset object detection[2]

[1] Lu et al. Semantic-discriminative mixup for generalizable cross-domain sensor-based human activity recognition. ACM IMWUT 2022.

[2] Jin X, Lan C, Zeng W, et al. Style normalization and restitution for domain generalization and adaptation. IEEE TMM 2021.

Hint: maybe we should develop application-oriented evaluation benchmarks?
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Theory

 Domain adaptation error bound
 The error on target domain is bounded by:

Source risk

Source-target distribution divergence

Complexity of ℋTarget risk

ℋ-divergence:

ℋΔℋ-distance:

Discrepancy distance:

• Ben-David S, Blitzer J, Crammer K, et al. Analysis of representations for domain adaptation. NIPS 2016.

• Ben-David S, Blitzer J, Crammer K, et al. A theory of learning from different domains[J]. Machine learning, 2010, 79(1): 151-175.

• Mansour Y, Mohri M, Rostamizadeh A. Domain adaptation with multiple sources. NIPS 2009.



Theory for DG

 Assumption 1: convex hull
 Key: approximate target domain using the convex hull of source distributions

Target risk

Weighted source risk Distance between target and convex hull

Diameter of Λ

Ideal joint risk (best source vs. target)

Albuquerque I, Monteiro J, Darvishi M, et al. Adversarial target-invariant representation learning for domain generalization[J]. 2020.



Theory for DG

 Assumption 2: classifier variation
 Key: the gap between available environments and all invariants 

Ye H, Xie C, Cai T, et al. Towards a theoretical framework of out-of-distribution generalization. NeurIPS 2021.

Variation



Theory of DG

 Assumption 3: subpopulation shift
 Key: Gaussian mixture model to contain all sub-distributions

Gaussian mixture distribution

Yao H, Wang Y, Li S, et al. Improving Out-of-Distribution Robustness via Selective Augmentation. ICML 2022.



Theory of DG

 Other theory
 Adversarial training and pretrained model is good for DG[1]

 DG can be bounded under kernel learning conditions[2]

 Current progress
 The research on DG theory is still on the go

• [1] Yi M, Hou L, Sun J, et al. Improved OOD Generalization via Adversarial Training and Pretraing. ICML 2021.

• [2] Deshmukh A A, Lei Y, Sharma S, et al. A generalization error bound for multi-class domain generalization[J]. arXiv preprint arXiv:1905.10392, 2019.



Challenges

 Continuous domain generalization
 Continuous / online learning

 Generalize to novel categories
 New categories instead of closed set

 Interpretable domain generalization
 Learning to interpret: why it can generalize?

 Large-scale pre-training / self-learning and DG
 The role of pre-training and self-learning with DG

 Performance evaluation
 Develop more fair and application-driven evaluation standards



Conclusion

General ML Domain adaptation Domain generalization
Non-IID Unseen target

Introduction and background

Relation with existing area: transfer learning, domain adaptation, multi-task learning…

Algorithm

Data manipulation: augmentation, or generation

Representation learning: domain-invariant learning, disentanglement

Learning strategy: meta-learning, ensemble learning, gradient, DRO, SSL…

Applications: CV, NLP, RL, medical…

Datasets, benchmark, evaluation

Theory and future challenges
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Thanks

jindong.wang@microsoft.com, haoliang.li@cityu.edu.hk

https://arxiv.org/abs/2103.03097

https://github.com/jindongwang/transferlearning/tree/master/code/DeepDG

Contact:

Tutorial website: https://dgresearch.github.io/

DG survey paper: 

Codebase:

mailto:jindong.wang@microsoft.com
mailto:haoliang.li@cityu.edu.hk
https://arxiv.org/abs/2103.03097
https://github.com/jindongwang/transferlearning/tree/master/code/DeepDG
https://dgresearch.github.io/

