
Vol.:(0123456789)1 3

Int. J. Mach. Learn. & Cyber.
DOI 10.1007/s13042-017-0666-8

ORIGINAL ARTICLE

OKRELM: online kernelized and regularized extreme learning
machine for wearable-based activity recognition

Lisha Hu1,2,3  · Yiqiang Chen1,2,3 · Jindong Wang1,2,3 · Chunyu Hu1,2,3 ·
Xinlong Jiang1,2,3

Received: 30 September 2016 / Accepted: 27 March 2017
© Springer-Verlag Berlin Heidelberg 2017

AR dataset and experimental results show the efficiency
and effectiveness of OKRELM.

Keywords  Extreme learning machine · Kernel · Activity
recognition · Online learning · Wearable computing

1  Introduction

Human activity recognition (AR) techniques promote
the development of large amounts of meaningful applica-
tions such as context awareness [1, 2], energy expendi-
ture [3], disease detection [4] and personal healthcare [5].
Moreover, with the development of wearable techniques in
recent years, diverse of sensors (accelerometer, gyroscope,
et al.) are embedded into the mini-wearable devices (e.g.
smartwatch [6], wristband [7], armband [8], head-belt [9,
10]). Consequently, wearable AR techniques are widely
employed to improve the users’ health conditions by col-
lecting and analyzing their data of activities of daily living
(ADLs), and then giving them feedback.

Wearable AR technologies grow extremely fast and a
great deal of work has been proposed [11, 12]. Owing to
the limited computation and storage resources of the wear-
able devices, a wearable AR model ought to be lightweight
with reduced computation complexity [13]. In some real
applications, real-time feedback is greatly important and
necessary. For instance, a jogger might see how many steps
he has made when he is running, then decides whether to
continue running or not. The AR model inside a wearable
device should fulfill the recognition task in real time. To do
this, a great number of machine learning algorithms (Deci-
sion Tree [14], Support Vector Machine [15, 16], Extreme
Learning Machine [17], Dynamic Bayesian Network [18],
Hidden Markov Models [19], Boosting [20], etc.) and a

Abstract  Miscellaneous mini-wearable devices (Jawbone
Up, Apple Watch, Google Glass, et al.) have emerged in
recent years to recognize the user’s activities of daily living
(ADLs) such as walking, running, climbing and bicycling.
To better suits a target user, a generic activity recognition
(AR) model inside the wearable devices requires to adapt
itself according to the user’s personality in terms of wear-
ing styles and so on. In this paper, an online kernelized
and regularized extreme learning machine (OKRELM) is
proposed for wearable-based activity recognition. A small-
scale but important subset of every incoming data chunk
is chosen to go through the update stage during the online
sequential learning. Therefore, OKRELM is a lightweight
incremental learning model with less time consumption
during the update and prediction phase, a robust and effec-
tive classifier compared with the batch learning scheme.
The performance of OKRELM is evaluated and compared
with several related approaches on a UCI online available

 *	 Yiqiang Chen
	 yqchen@ict.ac.cn

	 Lisha Hu
	 hulisha@ict.ac.cn

	 Jindong Wang
	 wangjindong@ict.ac.cn

	 Chunyu Hu
	 huchunyu@ict.ac.cn

	 Xinlong Jiang
	 jiangxinlong@ict.ac.cn

1	 Institute of Computing Technology, Chinese Academy
of Sciences, Beijing, China

2	 Beijing Key Laboratory of Mobile Computing and Pervasive
Device, Beijing, China

3	 University of Chinese Academy of Sciences, Beijing, China

http://orcid.org/0000-0002-1810-2430
http://crossmark.crossref.org/dialog/?doi=10.1007/s13042-017-0666-8&domain=pdf

	 Int. J. Mach. Learn. & Cyber.

1 3

couple of improved methods [21–26] have been proposed,
then employed for a large number of application fields
[27–32] and specially for wearable AR.

Among them, ELM is widely used owing to its good per-
formance and extremely fast learning speed. ELM [33–36]
is proposed as a single hidden layer feedforward neural net-
work, in which the hidden layer doesn’t need to be tuned
and the output weight is computed by the Moore–Penrose
generalized inverse. Due to its simple implementation
and universal approximation capabilities, ELM has been
widely used in multiple areas [37]. Recently the regularized
extreme learning machine (RELM) [38–40] is proposed
as a unified framework for binary, multiclass classifica-
tion and regression problems. RELM is superior to ELM
with more improved and stable generalization performance.
Besides, RELM incorporated with kernels can be beneficial
in contexts when an appropriate and explicit hidden layer
mapping function is either unknown or difficult to find out.
Recently, a new reduced extreme kernel sparse learning
methodology is proposed in [41] for tactile object recogni-
tion to deal with the dictionary learning and the classifier
learning simultaneously. Besides, authors in [41] developed
a reduced kernel dictionary learning method to tackle the
large storage requirement problems. Therefore, kernelized
RELM (RELM with kernels) is attracting more and more
researchers’ attention.

The kernelized RELM deals with the batch learning
problem in which the training data comes all together. Gen-
erally, such a generic and static AR model may not well fit
for a specific user with distinctive personalities in terms of
wearing styles and ADLs [42]. For example, an AR model
learned based on the data from the dominant wrist (e.g.
right wrist) may not work well for a target user wearing the
device on his/her non-dominant wrist (e.g. left wrist), or
having an opposite dominant wrist. Based on the incremen-
tal data of a target user, a generic model can adjust itself to
be a personalized model according to the online learning
mechanism.

Online learning is much relevant to the dynamic sequence
recognition since both of them deal with the dynamic and
time series signals. Besides, considering the fact that time
series do not usually lie in the Euclidean space, conventional
applications relevant to vector spaces (e.g. sparse coding
[43]) may not work well in such applications. Fortunately,
kernel trick is widely employed to address this problem. For
instance, a joint kernel sparse coding method fuses the tactile
sequences from separate fingers with a Gaussian DTW ker-
nel [44] and a joint group kernel sparse coding method deals
with the multivariate-time-series fusing both the tactile and
visual data [45]. In the online learning scenario when training
data comes one by one or chunk by chunk, online sequential
extreme learning machine (OSELM) [46] is proposed based
on ELM, and multiple online learning models have been

proposed based on the kernelized RELM. For instance: OS-
ELMK [47], FOKELM [48] and CF-FOKELM [49] have
been proposed for time series prediction; KOS-ELM [50]
is for binary classification and regression; KB-IELM [52]
is for binary, multiclass classification as well as regression
problems.

Since all the training data of KB-IELM [52] have to be
saved after the training stage and used again during the pre-
diction. It is greatly different from OSELM in that all the
training data will be discarded once the training stage is fin-
ished. As a consequence, the memory requirement grows
incrementally along with the online learning stages, which
may not be affordable for the wearable devices. A decre-
mental algorithm is developed for time series prediction to
remove the oldest training data according to fixed memory
schemes [47–49]. TransRKELM randomly chooses a subset
of initial data to generate the initial model, and update with
a subset of high confidential labeled incremental data during
the multiclass classification problem [51]. For binary classifi-
cation and regression problem, KOS-ELM [50] rejects to pro-
cess an incremental data if its distance to the linear span of
all the existing training data is less than a predefined thresh-
old, and removes the least important data from the training
dataset.

In this paper, we propose an online kernelized and regu-
larized extreme learning machine (OKRELM) for AR with
mini-wearable devices. Contributions of this paper are as
follows:

•	 OKRELM is a lightweight and robust classification model
compared with related methods since it uses a few and
important data from each data chunk to update the model
in the online training stage.

•	 OKRELM is able to deal with both the binary and multi-
class classification problems.

•	 OKRELM shows its superiorities in dealing with weara-
ble AR problems. We validate OKRELM on a UCI online
activity recognition dataset. Experimental results show
the efficiency and effectiveness of OKRELM in AR.

The rest of the paper is organized as follows. Section 2
gives the review of some related work. In Sect. 3, we elab-
orate the motivations and the OKRELM is proposed. The
performance of OKRELM is validated in Sect. 4. At last,
we conclude the paper and discuss some future extensions.

2 � Related work

2.1 � Regularized extreme learning machine (RELM)

Regularized extreme learning machine (RELM) is a sin-
gle hidden layer feedforward neural network, which is

Int. J. Mach. Learn. & Cyber.	

1 3

proposed as a unified framework for binary, multiclass clas-
sification and regression problems [38–40]. In this paper,
we only focus on the classification problems using the ker-
nelized RELM (RELM with kernels).

Let the training dataset be {(
xi, ti

)
|xi ∈ �d, ti ∈ Rm, i = 1,… ,N

}
, in which instance

xi is a d-dimensional feature vector and ti is the label of xi.
Within each label vector ti = (ti1,… , tim)

T, one single ele-
ment tik equals 1 representing the instance xi belonging to
class k, and the other elements

(
tij, j ≠ k

)
 equal −1. m, N

represent the number of classes and instances, respectively.
The optimization problem of RELM is presented in

Eq. (1). � is a L × m matrix to be solved. � is a m × N
dimensional slack variable in which the ith column of �,
notated by �:,i, is the training error of the instance xi. h(x)
maps x into some higher but unknown Hibert feature space
using the kernel trick. C is the penalty parameter balancing
the maximum generalization ability 1∕2‖‖‖�

2‖‖‖ and minimum

training error 1∕2
N∑
i=1

���:,i��2.

Based on the Karush–Kuhn–Tucker (KKT) Theorem, to
solve the problem in Eq. (1) is equivalent to solve its dual
problem. The objective function of its dual problem is in
Eq. (2). � is a N × m matrix in which the ith column of �
is the Lagrange multiplier of the instance xi. we call � the
Lagrange matrix.

Let the partial derivative of D with respect to all
the variables be 0, we have the following equations.
� =

[
h
(
x1
)
,… , h

(
xN

)]T is a matrix of N rows.

(1)
min
�,�

1

2
�2 +

C

2

N∑
i=1

�:,i
2

s.t.�T ⋅ h
(
xi
)
= ti − �:,i, i = 1,… ,N.

(2)

D =
1

2
�2 +

C

2

N∑
i=1

�:,i
2 −

N∑
i=1

m∑
j=1

αi,j

(
�T
:,j
h
(
xi
)
− ti,j + �j,i

)
.

(3a)�D

��:,j
= �:,j −

N∑
i=1

�i,jh
(
xi
)
= 0,∀j → � = �T�,

(3b)

�D

��j,i
= C�j,i − �i,j = 0,∀i, j → �i =

1

C
�T
i,:
,

∀i → � =
1

C
�T

→ �T =
1

C
�,

(3c)

�D

��i,j

= �T
:,j
h
(
xi
)
− ti,j + �j,i = 0,∀i, j → �Th

(
xi
)
− ti + �i = 0,∀i,

Equation (3a) and (3b) are substituted in Eq. (3c), we
can get Eq. (4). � =

[
t1,… , tN

]T is a N × m matrix. �N×N
represents an N × N identity matrix.

Equation (4) is substituted in Eq. (3a), we attain:

At last, the output function of RELM is:

For any testing instance x, f (x) is a m × 1 vector. The
prediction of RELM on x is in Eq. (7). fk(x) is the kth ele-
ment of f (x).

In Eq. (6), replace ��T by the Gram matrix �
(�ij = k(xi, xj), i, j = 1,… ,N) of a kernel k(u, v) and �h(x)
by the kernel form, we have the output function of kernel
based RELM:

The kernelized RELM is a batch learning model. It
can only deal with the problem that all the training data is
available before training process begins. A generic RELM
model could be learned offline based on the data from sev-
eral people. The generic model requires update to better
suit a single target user of the wearable device. Moreover,
the update process needs to be done using online learning
with the training data coming one-by-one or chunk-by-
chunk. In the following section, we review KB-IELM, one
of the online learning model proposed based on the ker-
nelized RELM.

2.2 � Kernel based incremental extreme learning
machine (KB‑IELM)

Based on the kernelized RELM, Kernel based incremental
extreme learning machine (KB-IELM) is proposed to deal
with the problem of training data coming one-by-one or
chunk-by-chunk [52]. Two stages (which we call the initial
and online stage) are contained in the online learning of
KB-IELM. Here we introduce these two stages.

•	 In the initial stage, supposing that the initial data
chunk (�0,�0) contains N0 training instances,
�0 = [x1,… , xN0

]T ,�0 = [t1,… , tN0
]T. The Lagrange

matrix �(0) and the output function f 0(x) are in

(4)� =
(
��T +

1

C
�N×N

)−1

�.

(5)� = �T
(
��T +

1

C
�N×N

)−1

�.

(6)f (x) = �Th(x) = TT
(
��T +

1

C
�N×N

)−1

�h(x).

(7)Prediction(x) = argmax
k∈{1,…,m}

fk(x).

(8)f (x) = �T
(
� +

1

C
�N×N

)−1[
k(x1, x),… , k(xN , x)

]T
.

	 Int. J. Mach. Learn. & Cyber.

1 3

Eqs. (9) and (10). �0 represents the N0 × N0 Gram
matrix with respect to the chunk (�0,�0).

•	 In the online stage, supposing that the first data
chunk (X1,�1) contains N1 training instances,
�1 =

[
xN0+1

,… , xN0+N1

]T
,�1 =

[
tN0+1

,… , tN0+N1

]T
.

The Lagrange matrix �(1) becomes:

where as

�1 represents the N1 × N1 Gram matrix with respect to
the chunk (�1,�1). �01 represents a N0 × N1 matrix in
which

(
�01

)
ij
= k

(
xi, xN0+j

)
, i = 1,… ,N0, j = 1,… ,N1.

According to the block matrix inverse formula [53], The
Lagrange matrix �(1) is calculated by:

where as

It is easy to see that �(0) = �−1
11
�0. In other words, �−1

11

is already computed in the initial stage. To compute �(1)

, we only need to invert a matrix of N1 × N1 in Eq. (14c).
Meanwhile, the output function f 1(x) is:

After that, if another new data chunk
(
�n,�n

)
 comes,

repeat steps (13)–(15) to update the output function
f n(x).

(9)�(0) =
(
�0 +

1

C
�N0×N0

)−1

�0,

(10)f 0(x) =
(
�(0)

)T[
k(x1, x),… , k(xN0

, x)
]T
.

(11)�(1) =

[
A11

�T
12

�12

�22

]−1[
�0

�1

]
,

(12)

⎧⎪⎨⎪⎩

�11 = �0 +
1

C
�N0×N0

�12 = �01

�22 = �1 +
1

C
�N1×N1

,

(13)�(1) =

[
�11

�T
12

�12

�22

][
�0

�1

]
,

(14a)�11 = �−1
11

+ �−1
11
�12

(
�22 − �T

12
�−1

11
�12

)−1
�T

12
�−1

11
,

(14b)�12 = −�−1
11
�12

(
�22 − �T

12
�−1

11
�12

)−1
,

(14c)�22 =
(
�22 − �T

12
�−1

11
�12

)−1
.

(15)f 1(x) =
(
�(1)

)T[
k
(
x1, x

)
,… , k

(
xN0+N1

, x
)]T

.

3 � Online kernelized and regularized extreme
learning machine (OKRELM)

3.1 � Motivation

In this section, we will think of the update process from a dif-
ferent perspective. � is a N × m matrix, whose rows increase
in the online stage when the training instances come continu-
ously. In this section, we change the notations a little bit dif-
ferent from those in Sect. 2.2.

•	 In the initial stage, supposing that the initial data chunk
(�0,�0) also contains N0 training instances. Therefore,
let the Lagrange matrix corresponding to (�0,�0) in this
stage be �(0)

0
, where the superscript represents the stage

and the subscript represents the data chunk. After the ini-
tial training is finished, �(0)

0
, �0, and the output function

f 0(x) can be computed by:

Replace �0�
T
0
 by the Gram matrix �0 and �0h(x) by

the kernel form, we have:

•	 In the online stage, supposing that the first coming data
chunk (�1,�1) also contains N1 training instances. At this
time, the Lagrange matrix �(1) =

[
�
(1)

0
,�

(1)

1

]T
, in which

�
(1)

0
 and �(1)

1
 correspond to (�0,�0) and (�1,�1), respec-

tively. According to Eq. (4) we have:

Equation (18) is equivalent to the following two equations:

(16a)�
(0)

0
=
(
�0�

T
0
+

1

C
�N0×N0

)−1

�0,

(16b)�0 = �T
0
�
(0)

0
,

(16c)

f 0(x) = �T
0
h(x) → f 0(x)

= �T

0

(
�0�

T

0
+

1

C
�
N0×N0

)−1

�0h(x).

(17a)�
(0)

0
=
(
�0 +

1

C
�N0×N0

)−1

�0,

(17b)�0 = �T
0
�
(0)

0
,

(17c)

f 0(x) = �T
0

(
�0 +

1

C
�N0×N0

)−1[
k
(
x1, x

)
,… , k

(
xN0

, x
)]T

.

(18)

([
�0

�1

][
�0

�1

]T
+

1

C
�(N0+N1)×(N0+N1)

)[
�
(1)

0

�
(1)

1

]
=

[
�0

�1

]
.

Int. J. Mach. Learn. & Cyber.	

1 3

�
(1)

0
can be represented by �(1)

1
 in a manner of:

Equation (20) is substituted in Eq. (19b), we can solve
�
(1)

1
 in a way of:

�n is defined by:

�0 is equal to Eq. (23) according to the Sherman–Mor-
rison–Woodbury (SMW) formula [54].

(19a)

(
�0�0

T +
1

C
�N0×N0

)
α
(1)

0
+�0�1

Tα
(1)

1
= �0,

(19b)�1�0
T�

(1)

0
+
(
�1�1

T +
1

C
�N1×N1

)
�
(1)

1
= �1,

(20)�
(1)

0
= �

(0)

0
−
(
�0�0

T +
1

C
�N0×N0

)−1

�0�1
T�

(1)

1
.

(21)�
(1)

1
= C

(
IN1×N1

+�1�0�1
T
)−1(

�1 −�1�0
)
,

(22)�n =

⎧
⎪⎪⎨⎪⎪⎩

⎛⎜⎜⎜⎝

⎡
⎢⎢⎣

�0

⋮

�n

⎤
⎥⎥⎦

T⎡
⎢⎢⎣

�0

⋮

�n

⎤
⎥⎥⎦
+

1

C
�L×L

⎞⎟⎟⎟⎠

−1

, n = 1, 2,…

�
�0

T�0 +
1

C
�L×L

�−1

, n = 0

,

In fact, �n cannot be saved owing to the implicit map-
ping while using kernels. Therefore, we define a new func-
tion gn(x, y) which can be saved during the online stage:

Therefore, the new output function f 1(x) can
be updated based on the old one f 0(x) by Eq. (28).
g1
(
�1, x

)
=
[
g1
(
x1, x

)
,… , g1

(
xN1

, x
)]T.

Generally, f n(x) is updated by f n−1(x) according to:

To summarize,

(26)f 1(x) = f 0(x) +
(
�1 − f 0(�1)

)T
�1�1h(x).

(27)gn(x, y) = h(x)T�nh(y).

(28)f 1(x) = f 0(x) +
(
�1 − f 0

(
�1

))T
g1
(
�1, x

)
.

(29)
f n(x) = f n−1(x) +

(
�n − f n−1

(
�n

))T
gn
(
�n, x

)
, n = 1, 2,…

(30a)

f n(x) =

⎧⎪⎨⎪⎩

f n−1(x) +
�
�n − f n−1

�
�n

��T
gn
�
�n, x

�
, n = 1, 2,…

�T
0

�
�0�

T
0
+

1

C
�N0×N0

�−1

�0h(x), n = 0
,

(30b)gn(x, y) =

⎧⎪⎨⎪⎩

gn−1(x, y) − gn−1
�
x,�n

��
�Nn×Nn

+ gn−1
�
�n,�n

��−1
gn−1

�
�n, y

�
, n = 1, 2,…

C

�
h(x)Th(y) − h(x)T�0

T
�
�0�0

T +
1

C
�N0×N0

�−1

�0h(y)

�
, n = 0

.

According to Eq. (3a), �1 can be represented by:

(23)

�0 =
(
�0

T�0 +
1

C
�
L×L

)−1

= C

(
�
L×L −�0

T
(
�0�0

T +
1

C
�
N0×N0

)−1

�0

)
.

Equations (20)–(21) are substituted into Eq. (24). By
making use of the SMW Formula again, �1 can also be rep-
resented by:

According to Eq. (6), we can get f 1(x) by:

(24)�1 =

[
�0

�1

]T[
�
(1)

0

�
(1)

1

]
= �0

Tα
(1)

0
+�1

T�
(1)

1
.

(25)�1 = �0 + �1�1
T
(
�1 −�1�0

)
.

Replace the Equations (30a) and (30b) by the kernel
form, we have:

If f n−1
(
�n

)
= �n, f n(x) equals to f n−1(x) according to

Eq. (31a). Therefore, there is absolutely no need to update
the output function. What if f n−1

(
�n

)
≠ �n but all �n (or a

majority of them) can be correctly predicted using f n−1(x)?
It seems we do not need to update the output function all
the time. In the following section, we propose when to
update and how to select a subset of the new data chunk to
update.

(31a)

f n(x) =

⎧⎪⎨⎪⎩

f n−1(x) +
�
�n − f n−1

�
�n

��T
gn
�
�n, x

�
, n = 1, 2,…

�T
0

�
�0 +

1

C
�N0×N0

�−1�
k
�
x1, x

�
,… , k

�
xN0

, x
��T

, n = 0
,

(31b)gn(x, y) =

⎧⎪⎨⎪⎩

gn−1(x, y) − gn−1
�
x,�n

��
�Nn×Nn

+ gn−1
�
�n,�n

��−1
gn−1

�
�n, y

�
, n = 1, 2,…

C

�
k(x, y) −

�
k
�
x, x1

�
,… , k

�
x, xN0

���
�0 +

1

C
�N0×N0

�−1�
k
�
x1, y

�
,… , k

�
xN0

, y
��T�

, n = 0
.

	 Int. J. Mach. Learn. & Cyber.

1 3

3.2 � The proposed OKRELM

Considering the large amounts of computation during the
online stage and the high possibility of redundant data
contained in the new data chunk. We propose the Online
Kernelized and Regularized Extreme Learning Machine
(OKRELM). The main contribution of OKRELM is the
model updating. When new data chunk comes, we firstly
predict their labels using the current model. If some of
them are misclassified, we will update the output function
based on only the misclassified ones. Figure 1 illustrates the
main pipeline of OKRELM. The algorithm of OKRELM is
shown in Table 1.

It consists of the initial and online stages during the

training process of OKRELM, which is similar to the other
online learning methods. During the initial stage, a Gram
matrix is firstly computed according to the initial data chunk
with N0 instances, then we attain the output function by
inverting a matrix of N0 × N0 (Eqs. 32–33).The Gram matrix
is updated first every time new data come in the online
stage. Then we predict the labels of instances in the new
data chunk using the current output function (Eqs. 34–35).
After that, all the misclassified instances can be gathered

into a subset for update by comparing the predictions with
the ground truth (Eq. 36). In the end, we update the output
function with those misclassified instances in the subset
(Eq. 38). When another data chunk comes, repeat the steps
in the online stage to update the output function.

Both the approaches in [41, 51] and OKRELM tackle
the expensive storage requirement in the training phase and
expensive time consumption in the testing process when
experienced with the kernels. Their differences are listed
as follows: (a) The approach in [41] is a batch learning
model, whereas the approach in [51] and the OKRELM in
this paper are especially proposed for incremental learning.
(b) Authors in [41] selected a subset of training samples as
prototypes by solving an optimization problem to decrease
the large storage requirement; about 10% initial data are
randomly selected to generate the initial model, and the
data with high confidence levels are chosen from the data
streams to update the model in [51]. For OKRELM, we
use all the available data to initialize, and choose only the
misclassified samples from each incremental data chunk to
update the model in the online stage.

4 � Performance evaluation

4.1 � Data description and preprocess

We employ the Daily and Sports Activities Data Set
(DSADS) [55] from UCI Machine Learning Repository to
validate the performance of OKRELM. This dataset contains
19 daily and sports activities [(1) sitting,(2) standing, (3)
lying on back, (4) lying on right side, (5) ascending stairs, (6)
descending stairs, (7) standing in an elevator still, (8) mov-
ing around in an elevator, (9) walking in a parking lot, (10)
walking on a treadmill with a speed of 4 kmh, (11) walking
in flat and 15° inclined positions, (12) running on a tread-
mill with a speed of 8 kmh, (13) exercising on a stepper, (14)
exercising on a cross trainer, (15) cycling on an exercise bike
in horizontal positions, (16) cycling on an exercise bike in
vertical positions, (17) rowing, (18) jumping, (19) playing
basketball] performed by eight participants (four males and
four females). Contributors explored the potential of record-
ing activities on five different body parts (torso, right arm,
left arm, right leg and left leg) with three-axial accelerom-
eter, three-axial gyroscope and three-axial magnetometer
on each part respectively. Each participant performed each
activity in his own style. That produced 45 sensor readings
per frame (3 × 5 × 3).

Features are extracted from every sensor. Firstly, we
combine the three axes of one sensor together using
a =

√
x2 + y2 + z2. Then we exploit the sliding window

technique to extract features (window length = 5 s [55]).

Fig. 1   Main pipeline of OKRELM

Int. J. Mach. Learn. & Cyber.	

1 3

27 features from both time and frequency domain are
extracted (see Table 2), leading to 405 dimensions in total
(27 × 3 × 5 = 405). After feature extraction, we perform
Principal Component Analysis (PCA) to reduce the dimen-
sions to 30 [55]. Specifications of the DSADS dataset is
shown in Table 3.

4.2 � Parameter selection

Gaussian kernel
(
k(xi, xj) = exp(− xi − xj

2∕g)
)
 is used

for RELM, KB-IELM and OKRELM. Therefore, we need
to find the optimal value combination for two parameters
(penalty parameter C and kernel parameter g). Grid search

Table 1   The OKRELM
algorithm

	 Int. J. Mach. Learn. & Cyber.

1 3

technique is employed and 50 different values {2−24, 2−23,
…, 224, 225} are tried for both C and g. The optimal value
combination of (C, g) is chosen from 2500 pairs.

We divide the DSADS dataset into the training and test-
ing sets using repeated random sub-sampling (RRSS) tech-
nique [56]. That is, for all the instances of each class of
each user, one-third is randomly selected at the testing set
and the other two-thirds are used as the training set. There-
fore, the training set and testing set consist of 6080 and
3040 instances, respectively.

For each pair of (C, g), the RELM, KB-IELM and
OKRELM models are all learned. For KB-IELM, 1000
training instances are randomly selected as the initial data
chunk, a series of data chunks with random size are ran-
domly generated in the online stage. Figure 2 shows the
testing accuracy of RELM, KB-IELM and OKRELM.

From the results in Fig. 2 we can see that, performance
of RELM varies smoothly in the parameter space. KB-
IELM and OKRELM are consistent with RELM in some
places while inconsistent with RELM in the other places.
Therefore, the optimal value of (C, g) is chosen to be (22,
24) corresponding to the highest and consistent testing
accuracy. In the following section, all experiments are run
with the optimal values for the penalty parameter C and
kernel parameter g.

4.3 � Experimental results and analysis

4.3.1 � Robustness comparison with different initial
and online chunk size

In order to evaluate the robustness of our proposed model,
firstly we introduce two important concepts: initial trunk
size and online trunk size. Initial trunk size refers to the
number of training instances contained in the initial chunk
while online trunk size means the number of training
instances contained in each online chunk. In the experi-
ments, we train KB-IELM and OKRELM with the initial
chunk size taking values from {100, 200, 300,…, 2000}
and the online chunk size taking values from {50, 100,
150,…, 1000}. Training and testing sets are generated
using the RRSS technique as in Sect. 4.2. The whole pro-
cess is repeated five times and results are averaged and
shown in Fig. 3.

From the results in Fig. 3 we can see that: Given a
random initial chunk size, the accuracies of both KB-
IELM and OKRELM firstly grow with the increasing
online chunk size, then converge to a high performance
and remain stable at last. If we fix the online chunk size,
the increase trend is not straightforward when the ini-
tial chunk size grows. Therefore, compared with the ini-
tial chunk size, the online chunk size has a much stronger
influence on the final performance of both classifiers. To
be more specific, KB-IELM needs an online chunk size of
larger than 700 to achieve an accuracy of about 90%, while
OKRELM only needs 250 (no matter whether misclassified
or not). What’s more, OKRELM may require less than 250
instances per chunk according to results in Sect. 4.3.3. In
other words, OKRELM is less sensitive and more robust
than KB-IELM when used to construct a generic AR
model. Once the online chunk size is satisfied, both KB-
IELM and OKRELM can achieve a satisfactory predictive

Table 2   Features extracted per
sensor on each body part

ID Feature Description

1 Mean Average value of samples in window
2 STD Standard deviation
3 Minimum Minimum
4 Maximum Maximum
5 Mode The value with the largest frequency
6 Range Maximum minus minimum
7 Mean crossing rate Rate of times signal crossing the mean value
8 dc Direct component
9–13 Spectrum peak position First five peaks after FFT
14–18 Frequency Frequencies corresponding to the five peaks
19 Energy Square of norm
20–23 Four shape features Mean, STD, skewness, kurtosis
24–27 Four amplitude features Mean, STD, skewness, kurtosis

Table 3   Specifications of the
DSADS dataset

Name DSADS dataset

Class number 1–19
User number 1–8
Total data size 9120

Int. J. Mach. Learn. & Cyber.	

1 3

performance comparable to the RELM no matter how
many instances are contained in the initial chunk.

4.3.2 � Accuracy and time consumption comparison
with RRSS split

To compare the effectiveness and efficiency of KB-IELM
and OKRELM, we record their predictive accuracy on the
testing set as the online chunk size increases. In the mean-
time, we also keep tracking of their time consumption
during training and testing stages. Based on the results in
Sect. 4.3.1, the initial chunk size is set to 100 and the online
chunk size is set to 700. Training and testing sets are gener-
ated using the RRSS technique as in Sect. 4.2. The whole
process is repeated five times and results are averaged and
shown in Fig. 4.

(a)

(b)

-24-20-16-12-8 -4 0 4 8 12 16 20 24

-24-20
-16-12-8 -4 0 4 8 12 16

20 24

0

0.2

0.4

0.6

0.8

1

log2(g)log2(C)

A
cc

ur
a

cy

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

-24-20-16-12-8 -4 0 4 8 12 16 20 24

-24-20
-16-12-8 -4 0 4 8 12 16

20 24

0

0.2

0.4

0.6

0.8

1

log2(g)log2(C)

A
cc

ur
a

cy

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(c)

-24-20-16-12-8 -4 0 4 8 12 16 20 24

-24-20
-16-12-8 -4 0 4 8 12 16

20 24

0

0.2

0.4

0.6

0.8

1

log2(g)log2(C)

A
cc

ur
a

cy

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Fig. 2   Testing accuracy of RELM, KB-IELM and OKRELM with
different parameter pairs. a RELM; b KB-IELM; c OKRELM

(a)

(b)

Fig. 3   Testing accuracy of KB-IELM and OKRELM with different
initial and online chunk sizes. a KB-IELM; b OKRELM

	 Int. J. Mach. Learn. & Cyber.

1 3

The predictive performance of KB-IELM and OKRELM
is extremely low (5.25%, see Fig. 4a) at the beginning
owing to the sparse initial training data (100 instances from
19 classes). As the incremental data chunks coming, the
accuracy grows continuously and finally achieves a preci-
sion similar to RELM (94.53%). It verifies that the perfor-
mance of online learning models KB-IELM and OKRELM
can converge to the accuracy of the batch model RELM.
The accuracy of OKRELM is a bit lower (3.97%) than that
of KB-IELM, because large amounts of training data from
the data chunks have been eliminated for OKRELM from
updating the model compared with KB-IELM. Those data
eliminated might not be unhelpful. However, such an elimi-
nation in OKRELM saves 46.49% training time and 74.61%
testing time compared with KB-IELM (see Fig. 4b). It
makes OKRELM a lightweight and effective AR model for
mini-wearable devices.

4.3.3 � Accuracy and time consumption comparison
with LOO split

To view the personalization learning probability, we com-
pare the effectiveness and efficiency of KB-IELM and
OKRELM which are trained initially based on seven users’
data while updated and validated on the 8th user’s data.
The leave one subject out (LOO) cross validation technique
[56] is used to generate the training and testing datasets.
For each user’s instances, one-half is used for updating the
model (50 instances per chunk owing to the limitations
instance number of one single user), and the other half is
used as the testing set and 100 instances of the other seven
users are randomly selected as the initial training set. The
experiment is run 20 times for each user and the predictive
performances are averaged and shown in Fig. 5.

All in all, the trends of accuracy in Fig. 5 are nearly the
same for different users. Performances of KB-IELM and
OKRELM improve at the beginning with KB-IELM a bit
more accurate than OKRELM. During the last four chunks,
the performance of KB-IELM goes down and becomes
fluctuate while OKRELM becomes gradually convergent
and stable in the predictive accuracy. To better observe and
analyze, the results in Fig. 5 are averaged and shown in
Fig. 6a. Besides, Fig. 6b shows the averaged time consump-
tions in the training and testing stages.

The predictive performance of OKRELM increases
steadily along with the update process which is similar to
the results in Fig. 4a. The results of OKRELM are very
interesting since the chunk size in the online stage is only
50 (data of about 4.16 min, 50 instances × 5 s), which is
less than needed (250, see the discussion in Sect. 4.3.1).
Therefore, it reveals the robust performance of OKRELM
in transforming a generic model into a personalized model.
For KB-IELM, its accuracy increases faster in the first
place, goes down abruptly and becomes fluctuant in the end.
The reason of the superiority of KB-IELM at the beginning
of the online stage has been discussed in Sect. 4.3.2. The
fluctuation phenomenon of KB-IELM again confirms our
conclusion in Sect. 4.3.1 that the performance of KB-IELM
might be unstable when the chunk size is not large. To
be more specific, KB-IELM requires about 700 instances
(data of about 58.33 min, 700 instances × 5 s) each chunk
to assure the update process going in a positive way (the
accuracy will increase after the update). When chunk size
is not enough (say 50 in our experiment), it is more likely
to decrease for KB-IELM. Considering the jogger example
introduced in the Introduction, KB-IELM updates every
58.33 min to attain a stable performance while OKRELM
can update every 4.16 min. Therefore, OKRELM is more

0 1 2 3 4 5 6 7 8
0

5

10

15

)s(e
miT

niarT

OKRELM
KBIELM

0 1 2 3 4 5 6 7 8
0

0.05

0.1

0.15

0.2

Chunk ID

)s(e
miTtseT

OKRELM
KBIELM

(b)(a)

0 1 2 3

Chunk ID

Ac
cu

ra
cy

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

4 5 6 7

OKRELM
KBIELM

8

Fig. 4   Accuracy, training time and testing time comparisons of KB-IELM and OKRELM with RRSS split during different phases in the online
stage. a Predictive accuracy on the testing set; b training time and testing time consumptions

Int. J. Mach. Learn. & Cyber.	

1 3

Fig. 5   The predictive accuracy
of KB-IELM and OKRELM on
the datasets of different users
with LOO split

User 1 User 2

User 3 User 4

User 5 User 6

User 7 User 8

	 Int. J. Mach. Learn. & Cyber.

1 3

suitable for real-time update. Meanwhile, the time effi-
ciency of OKRELM during the training process (Fig. 6b)
is much more straightforward compared with the results in
Fig. 4b. Specifically, the time consumption in the training
stage of OKRELM is only 7.18% of the time consumption
in the training stage of KB-IELM. OKRELM saves 38.17%
time compared with KB-IELM during the prediction stage.
That is, OKRELM is more suitable to predict user’s on-
going activity in real-time.

To summarize, OKRELM is more stable and efficient
than KB-IELM when used to construct a personalized AR
model.

5 � Conclusion

In this paper, we propose OKRELM, an online kernelized
and regularized extreme learning machine for activity rec-
ognition using mini-wearable devices. OKRELM is more
efficient than the related online learning models during both
the training and prediction processes, and effective which is
comparable to the batch mode model. Experimental results
on an online UCI activity recognition dataset show the effi-
ciency and effectiveness of the proposed OKRELM.

When a generic classifier is updated towards a personal-
ized model by making use of online data of the target user,
it may experience the class imbalance problem that large
amounts of data in the upcoming chunk are from a few
classes. In the future, we plan to modify the OKRELM to
better suit the class imbalance problem in wearable activity
recognition.

Acknowledgements  The authors are much grateful to Prof. Xingyu
Gao from Institute of Software Chinese Academy of Sciences for his

constructive comments and suggestions that have helped to improve
the quality of this paper. This work is supported by Natural Science
Foundation of China under Grant Nos. 61572471 and 61210010, Chi-
nese Academy of Sciences Research Equipment Development Project
under Grant No. YZ201527 and Science and Technology Planning
Project of Guangdong Province under Grant No. 2015B010105001.

References

	 1.	 Chen Z, Chen Y, Hu L et al (2014) ContextSense: unobtrusive
discovery of incremental social context using dynamic Bluetooth
data[C]// International Joint Conference on Pervasive and Ubiq-
uitous Computing: Adjunct Publication. ACM, 23–26

	 2.	 Hu L, Chen Y, Wang S et al (2013) A nonintrusive and single-
point infrastructure-mediated sensing approach for water-use
activity recognition[C]//International Conference on embedded
and ubiquitous computing (EUC). IEEE, 2120–2126

	 3.	 Wang S, Zhou G, Hu L et al (2015) CARE: chewing activity rec-
ognition using noninvasive single axis accelerometer[C]// Inter-
national Joint Conference on pervasive and ubiquitous comput-
ing: Adjunct Publication. ACM, 109–112

	 4.	 Chen YQ, Yu HC, Miao CY et al (2015) Using motor patterns
for stroke detection[J]. Science (Advances in Computational Psy-
chophysiology) 350(6256):12–14

	 5.	 Wang R, Chen F, Chen Z et al (2014) StudentLife: assessing
mental health, academic performance and behavioral trends of
college students using smartphones[C]// International Joint Con-
ference on pervasive and ubiquitous computing. ACM, 3–14

	 6.	 https://getpebble.com/steel. Accessed 2 June 2014
	 7.	 https://jawbone.com/up. Accessed 2 June 2014
	 8.	 http://www.bodymedia.com/Support-Help/BodyMedia-FIT-

BW. Accessed 2 June 2014
	 9.	 Zhao Q, Hu B, Shi Y et al (2014) Automatic identification and

removal of ocular artifacts in EEG—improved adaptive predic-
tor filtering for portable applications[J]. IEEE Trans Nanobio-
Science 13(2):109–117

	10.	 Hu B, Majoe D, Ratcliffe M et al (2011) EEG-based cogni-
tive interfaces for ubiquitous applications: developments and
challenges[J]. IEEE Intell Syst 26(5):46–53

0 1 2 3 4 5 6 7 8 9 10 11
0

0.02

0.04

0.06

T
ra

in
 T

im
e(

s) OKRELM
KBIELM

0 1 2 3 4 5 6 7 8 9 10 11
6

8

10

12
x 10

-3

Chunk ID

T
es

t T
im

e(
s) OKRELM

KBIELM

0 1 2 3 4 5 6 7 8 9 10 11

Chunk ID

A
cc

ur
ac

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) (b)

OKRELM

KBIELM

Fig. 6   Average accuracy, training time and testing time comparisons of KB-IELM and OKRELM with LOO split during different phases in the
online stage. a Predictive accuracy on the testing set; b training time and testing time consumptions

https://getpebble.com/steel
https://jawbone.com/up
http://www.bodymedia.com/Support-Help/BodyMedia-FIT-BW
http://www.bodymedia.com/Support-Help/BodyMedia-FIT-BW

Int. J. Mach. Learn. & Cyber.	

1 3

	11.	 Bao L, Intille SS (2004) Activity recognition from user-anno-
tated acceleration data[C]//International Conference on perva-
sive computing. Springer, Berlin Heidelberg, 1–17

	12.	 Berlin E, Van Laerhoven K (2012) Detecting leisure activities
with dense motif discovery[C]//International Conference on
ubiquitous computing. ACM, 250–259

	13.	 Hu L (2014) A lightweight and low-power activity recognition
system for mini-wearable devices[C]//International Confer-
ence on pervasive computing and communications Workshops
(PERCOM Workshops). IEEE, 166–167

	14.	 Pärkkä J, Cluitmans L, Ermes M (2010) Personalization algo-
rithm for real-time activity recognition using PDA, wireless
motion bands, and binary decision tree[J]. IEEE Trans Inf
Technol Biomed 14(5):1211–1215

	15.	 Qian H, Mao Y, Xiang W et al (2010) Recognition of human
activities using SVM multi-class classifier[J]. Pattern Recognit
Lett 31(2):100–111

	16.	 Hu L, Lu S, Wang X (2013) A new and informative active
learning approach for support vector machine[J]. Inf Sci
244:142–160

	17.	 Hu L, Chen Y, Wang S et al (2014) b-COELM: A fast, light-
weight and accurate activity recognition model for mini-weara-
ble devices[J]. Pervasive Mob Comput 15:200–214

	18.	 Zeng Z, Ji Q (2010) Knowledge based activity recognition with
dynamic Bayesian network[C]//European Conference on com-
puter vision. Springer Berlin Heidelberg, 532–546

	19.	 Gaikwad K (2012) HMM classifier for human activity
recognition[J]. Comput Sci Eng 2(4):27

	20.	 Song Y, Lu Z, Leung CW et al (2013) Collaborative boosting for
activity classification in microblogs[C]// International Confer-
ence on knowledge discovery and data mining. ACM, 482–490

	21.	 Gu B, Sheng VS (2016) A robust regularization path algorithm
for ν-support vector classification. IEEE Trans Neural Netw
Learn Syst 99. doi:10.1109/TNNLS.2016.2527796

	22.	 Gu B, Sun X, Sheng VS (2016) Structural minimax probability
machine[J].IEEE Trans Neural Netw Learn Syst 99. doi:10.1109/
TNNLS.2016.2544779

	23.	 Gu B, Sheng VS, Wang Z et al (2015) Incremental learning for
ν-support vector regression[J]. Neural Netw 67:140–150

	24.	 Gu B, Sheng VS, Tay KY et al (2015) Incremental support vec-
tor learning for ordinal regression[J]. IEEE Trans Neural Netw
Learn Syst 26(7):1403–1416

	25.	 Gu B, Sheng V S, Li S (2015) Bi-parameter space partition for
cost-sensitive SVM[C]//IJCAI 3532–3539.

	26.	 Zhang Y, Sun X, Wang B (2016) Efficient algorithm for k-barrier
coverage based on integer linear programming[J]. China Com-
mun 13(7):16–23

	27.	 Wen X, Shao L, Xue Y et al (2015) A rapid learning algorithm
for vehicle classification[J]. Inf Sci 295:395–406

	28.	 Kong Y, Zhang M, Ye D (2017) A belief propagation-
based method for task allocation in open and dynamic cloud
environments[J]. Knowl Based Syst 115:123–132

	29.	 Zheng Y, Jeon B, Xu D et al (2015) Image segmentation by gen-
eralized hierarchical fuzzy C-means algorithm[J]. J Intell Fuzzy
Syst 28(2):961–973

	30.	 Fu Z, Wu X, Guan C et al (2016) Toward efficient multi-
keyword fuzzy search over encrypted outsourced data with
accuracy improvement[J]. IEEE Trans Inf Forensics Secur
11(12):2706–2716

	31.	 Gao X, Hoi S C H, Zhang Y et al (2014) SOML: sparse online
metric learning with application to image retrieval. In: Twenty-
eighth AAAI conference on artificial intelligence. AAAI
Publications

	32.	 Chen Z, Chen Y, Gao X et al (2015) Unobtrusive sensing
incremental social contexts using fuzzy class incremental
learning[C]// International Conference on data mining (ICDM).
IEEE, 71–80

	33.	 Huang GB, Zhu QY, Siew CK (2006) Extreme learning machine:
theory and applications[J]. Neurocomputing 70(1):489–501

	34.	 Huang GB, Zhu QY, Siew CK (2004) Extreme learning machine:
a new learning scheme of feedforward neural networks[C]//
International Joint Conference on Neural Networks. IEEE
2:985–990

	35.	 Huang GB, Chen L, Siew CK (2006) Universal approxima-
tion using incremental constructive feedforward networks
with random hidden nodes[J]. IEEE Trans Neural Networks
17(4):879–892

	36.	 Schmidt WF, Kraaijveld MA, Duin R P W (1992) Feedforward
neural networks with random weights[C]// International Confer-
ence on Pattern Recognition. IEEE, 1–4

	37.	 Huang G, Huang GB, Song S et al (2015) Trends in extreme
learning machines: a review[J]. Neural Netw 61:32–48

	38.	 Huang GB, Zhou H, Ding X et al (2012) Extreme learning
machine for regression and multiclass classification[J]. IEEE
Trans Syst Man Cybern Part B (Cybernetics) 42(2):513–529

	39.	 An S, Liu W, Venkatesh S (2007) Face recognition using ker-
nel ridge regression[C]//International Conference on Computer
Vision and Pattern Recognition. IEEE, 1–7

	40.	 Saunders C, Gammerman A, Vovk V (1998) Ridge regression
learning algorithm in dual variables[C]//ICML 98:515–521

	41.	 Liu H, Qin J, Sun F et al (2016) Extreme kernel sparse learn-
ing for tactile object recognition[J]. IEEE Trans Cybern 99.
doi:10.1109/TCYB.2016.2614809

	42.	 Hu L, Chen Y, Wang S et al (2016) Less Annotation on Personal-
ized Activity Recognition Using Context Data[C]//International
Conference on Ubiquitous Intelligence and Computing(UIC)
327–332.

	43.	 Liu H, Liu Y, Sun F (2015) Robust exemplar extraction using
structured sparse coding[J]. IEEE Trans Neural Netw Learn Syst
26(8):1816–1821

	44.	 Liu H, Guo D, Sun F (2016) Object recognition using tactile
measurements: kernel sparse coding methods[J]. IEEE Trans
Instrum Meas 65(3):656–665

	45.	 Liu H, Yu Y, Sun F et al (2016) Visual-tactile fusion for object
recognition[J]. IEEE Trans Autom Sci Eng

	46.	 Liang NY, Huang GB, Saratchandran P et al (2006) A fast and
accurate online sequential learning algorithm for feedforward
networks[J]. IEEE Trans Neural Netw 17(6):1411–1423

	47.	 Wang X, Han M (2014) Online sequential extreme learning
machine with kernels for nonstationary time series prediction[J].
Neurocomputing 145:90–97

	48.	 Zhou X, Liu Z, Zhu C (2014) Online regularized and kernelized
extreme learning machines with forgetting mechanism[J]. Math
Probl Eng 2014:938548. doi:10.1155/2014/938548

	49.	 Zhou XR, Wang CS (2016) Cholesky factorization based online
regularized and kernelized extreme learning machines with for-
getting mechanism[J]. Neurocomputing 174:1147–1155

	50.	 Scardapane S, Comminiello D, Scarpiniti M et al (2015) Online
sequential extreme learning machine with kernels[J]. IEEE Trans
Neural Netw Learn Syst 26(9):2214–2220

	51.	 Deng WY, Zheng QH, Wang ZM (2014) Cross-person activity
recognition using reduced kernel extreme learning machine[J].
Neural Netw 53:1–7

	52.	 Guo L, Hao JH, Liu M (2014) An incremental extreme learning
machine for online sequential learning problems[J]. Neurocom-
puting 128:50–58

http://dx.doi.org/10.1109/TNNLS.2016.2527796
http://dx.doi.org/10.1109/TNNLS.2016.2544779
http://dx.doi.org/10.1109/TNNLS.2016.2544779
http://dx.doi.org/10.1109/TCYB.2016.2614809
http://dx.doi.org/10.1155/2014/938548

	 Int. J. Mach. Learn. & Cyber.

1 3

	53.	 Hager WW (1989) Updating the inverse of a matrix[J]. SIAM
Rev 31(2):221–239

	54.	 Henderson HV, Searle SR (1981) On deriving the inverse of a
sum of matrices[J]. SIAM Rev 23(1):53–60

	55.	 Barshan B, Yüksek MC (2014) Recognizing daily and sports
activities in two open source machine learning environments
using body-worn sensor units[J]. Comput J 57(11):1649–1667

	56.	 Altun K, Barshan B (2010) Human activity recognition using
inertial/magnetic sensor units[C]//International Workshop on
Human Behavior Understanding. Springer Berlin Heidelberg,
38–51

	OKRELM: online kernelized and regularized extreme learning machine for wearable-based activity recognition
	Abstract
	1 Introduction
	2 Related work
	2.1 Regularized extreme learning machine (RELM)
	2.2 Kernel based incremental extreme learning machine (KB-IELM)

	3 Online kernelized and regularized extreme learning machine (OKRELM)
	3.1 Motivation
	3.2 The proposed OKRELM

	4 Performance evaluation
	4.1 Data description and preprocess
	4.2 Parameter selection
	4.3 Experimental results and analysis
	4.3.1 Robustness comparison with different initial and online chunk size
	4.3.2 Accuracy and time consumption comparison with RRSS split
	4.3.3 Accuracy and time consumption comparison with LOO split

	5 Conclusion
	Acknowledgements
	References

