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1  Introduction

Human activity recognition (AR) techniques promote 
the development of large amounts of meaningful applica-
tions such as context awareness [1, 2], energy expendi-
ture [3], disease detection [4] and personal healthcare [5]. 
Moreover, with the development of wearable techniques in 
recent years, diverse of sensors (accelerometer, gyroscope, 
et  al.) are embedded into the mini-wearable devices (e.g. 
smartwatch [6], wristband [7], armband [8], head-belt [9, 
10]). Consequently, wearable AR techniques are widely 
employed to improve the users’ health conditions by col-
lecting and analyzing their data of activities of daily living 
(ADLs), and then giving them feedback.

Wearable AR technologies grow extremely fast and a 
great deal of work has been proposed [11, 12]. Owing to 
the limited computation and storage resources of the wear-
able devices, a wearable AR model ought to be lightweight 
with reduced computation complexity [13]. In some real 
applications, real-time feedback is greatly important and 
necessary. For instance, a jogger might see how many steps 
he has made when he is running, then decides whether to 
continue running or not. The AR model inside a wearable 
device should fulfill the recognition task in real time. To do 
this, a great number of machine learning algorithms (Deci-
sion Tree [14], Support Vector Machine [15, 16], Extreme 
Learning Machine [17], Dynamic Bayesian Network [18], 
Hidden Markov Models [19], Boosting [20], etc.) and a 
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couple of improved methods [21–26] have been proposed, 
then employed for a large number of application fields 
[27–32] and specially for wearable AR.

Among them, ELM is widely used owing to its good per-
formance and extremely fast learning speed. ELM [33–36] 
is proposed as a single hidden layer feedforward neural net-
work, in which the hidden layer doesn’t need to be tuned 
and the output weight is computed by the Moore–Penrose 
generalized inverse. Due to its simple implementation 
and universal approximation capabilities, ELM has been 
widely used in multiple areas [37]. Recently the regularized 
extreme learning machine (RELM) [38–40] is proposed 
as a unified framework for binary, multiclass classifica-
tion and regression problems. RELM is superior to ELM 
with more improved and stable generalization performance. 
Besides, RELM incorporated with kernels can be beneficial 
in contexts when an appropriate and explicit hidden layer 
mapping function is either unknown or difficult to find out. 
Recently, a new reduced extreme kernel sparse learning 
methodology is proposed in [41] for tactile object recogni-
tion to deal with the dictionary learning and the classifier 
learning simultaneously. Besides, authors in [41] developed 
a reduced kernel dictionary learning method to tackle the 
large storage requirement problems. Therefore, kernelized 
RELM (RELM with kernels) is attracting more and more 
researchers’ attention.

The kernelized RELM deals with the batch learning 
problem in which the training data comes all together. Gen-
erally, such a generic and static AR model may not well fit 
for a specific user with distinctive personalities in terms of 
wearing styles and ADLs [42]. For example, an AR model 
learned based on the data from the dominant wrist (e.g. 
right wrist) may not work well for a target user wearing the 
device on his/her non-dominant wrist (e.g. left wrist), or 
having an opposite dominant wrist. Based on the incremen-
tal data of a target user, a generic model can adjust itself to 
be a personalized model according to the online learning 
mechanism.

Online learning is much relevant to the dynamic sequence 
recognition since both of them deal with the dynamic and 
time series signals. Besides, considering the fact that time 
series do not usually lie in the Euclidean space, conventional 
applications relevant to vector spaces (e.g. sparse coding 
[43]) may not work well in such applications. Fortunately, 
kernel trick is widely employed to address this problem. For 
instance, a joint kernel sparse coding method fuses the tactile 
sequences from separate fingers with a Gaussian DTW ker-
nel [44] and a joint group kernel sparse coding method deals 
with the multivariate-time-series fusing both the tactile and 
visual data [45]. In the online learning scenario when training 
data comes one by one or chunk by chunk, online sequential 
extreme learning machine (OSELM) [46] is proposed based 
on ELM, and multiple online learning models have been 

proposed based on the kernelized RELM. For instance: OS-
ELMK [47], FOKELM [48] and CF-FOKELM [49] have 
been proposed for time series prediction; KOS-ELM [50] 
is for binary classification and regression; KB-IELM [52] 
is for binary, multiclass classification as well as regression 
problems.

Since all the training data of KB-IELM [52] have to be 
saved after the training stage and used again during the pre-
diction. It is greatly different from OSELM in that all the 
training data will be discarded once the training stage is fin-
ished. As a consequence, the memory requirement grows 
incrementally along with the online learning stages, which 
may not be affordable for the wearable devices. A decre-
mental algorithm is developed for time series prediction to 
remove the oldest training data according to fixed memory 
schemes [47–49]. TransRKELM randomly chooses a subset 
of initial data to generate the initial model, and update with 
a subset of high confidential labeled incremental data during 
the multiclass classification problem [51]. For binary classifi-
cation and regression problem, KOS-ELM [50] rejects to pro-
cess an incremental data if its distance to the linear span of 
all the existing training data is less than a predefined thresh-
old, and removes the least important data from the training 
dataset.

In this paper, we propose an online kernelized and regu-
larized extreme learning machine (OKRELM) for AR with 
mini-wearable devices. Contributions of this paper are as 
follows:

•	 OKRELM is a lightweight and robust classification model 
compared with related methods since it uses a few and 
important data from each data chunk to update the model 
in the online training stage.

•	 OKRELM is able to deal with both the binary and multi-
class classification problems.

•	 OKRELM shows its superiorities in dealing with weara-
ble AR problems. We validate OKRELM on a UCI online 
activity recognition dataset. Experimental results show 
the efficiency and effectiveness of OKRELM in AR.

The rest of the paper is organized as follows. Section 2 
gives the review of some related work. In Sect. 3, we elab-
orate the motivations and the OKRELM is proposed. The 
performance of OKRELM is validated in Sect. 4. At last, 
we conclude the paper and discuss some future extensions.

2 � Related work

2.1 � Regularized extreme learning machine (RELM)

Regularized extreme learning machine (RELM) is a sin-
gle hidden layer feedforward neural network, which is 
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proposed as a unified framework for binary, multiclass clas-
sification and regression problems [38–40]. In this paper, 
we only focus on the classification problems using the ker-
nelized RELM (RELM with kernels).

Let the training dataset be {(
xi, ti

)
|xi ∈ �d, ti ∈ Rm, i = 1,… ,N

}
, in which instance 

xi is a d-dimensional feature vector and ti is the label of xi. 
Within each label vector ti = (ti1,… , tim)

T, one single ele-
ment tik equals 1 representing the instance xi belonging to 
class k, and the other elements 

(
tij, j ≠ k

)
 equal −1. m, N 

represent the number of classes and instances, respectively.
The optimization problem of RELM is presented in 

Eq.  (1). � is a L × m matrix to be solved. � is a m × N 
dimensional slack variable in which the ith column of �, 
notated by �:,i, is the training error of the instance xi. h(x) 
maps x into some higher but unknown Hibert feature space 
using the kernel trick. C is the penalty parameter balancing 
the maximum generalization ability 1∕2‖‖‖�

2‖‖‖ and minimum 

training error 1∕2
N∑
i=1

���:,i��2.

Based on the Karush–Kuhn–Tucker (KKT) Theorem, to 
solve the problem in Eq. (1) is equivalent to solve its dual 
problem. The objective function of its dual problem is in 
Eq. (2). � is a N × m matrix in which the ith column of � 
is the Lagrange multiplier of the instance xi. we call � the 
Lagrange matrix.

Let the partial derivative of D with respect to all 
the variables be 0, we have the following equations. 
� =

[
h
(
x1
)
,… , h

(
xN

)]T is a matrix of N rows.

(1)
min
�,�

1

2
�2 +

C

2

N∑
i=1

�:,i
2

s.t.�T ⋅ h
(
xi
)
= ti − �:,i, i = 1,… ,N.

(2)

D =
1

2
�2 +

C

2

N∑
i=1

�:,i
2 −

N∑
i=1

m∑
j=1

αi,j

(
�T
:,j
h
(
xi
)
− ti,j + �j,i

)
.

(3a)�D

��:,j
= �:,j −

N∑
i=1

�i,jh
(
xi
)
= 0,∀j → � = �T�,

(3b)

�D

��j,i
= C�j,i − �i,j = 0,∀i, j → �i =

1

C
�T
i,:
,

∀i → � =
1

C
�T

→ �T =
1

C
�,

(3c)

�D

��i,j

= �T
:,j
h
(
xi
)
− ti,j + �j,i = 0,∀i, j → �Th

(
xi
)
− ti + �i = 0,∀i,

Equation (3a) and (3b) are substituted in Eq.  (3c), we 
can get Eq.  (4). � =

[
t1,… , tN

]T is a N × m matrix. �N×N 
represents an N × N identity matrix.

Equation (4) is substituted in Eq. (3a), we attain:

At last, the output function of RELM is:

For any testing instance x, f (x) is a m × 1 vector. The 
prediction of RELM on x is in Eq. (7). fk(x) is the kth ele-
ment of f (x).

In Eq.  (6), replace ��T by the Gram matrix � 
(�ij = k(xi, xj), i, j = 1,… ,N) of a kernel k(u, v) and �h(x) 
by the kernel form, we have the output function of kernel 
based RELM:

The kernelized RELM is a batch learning model. It 
can only deal with the problem that all the training data is 
available before training process begins. A generic RELM 
model could be learned offline based on the data from sev-
eral people. The generic model requires update to better 
suit a single target user of the wearable device. Moreover, 
the update process needs to be done using online learning 
with the training data coming one-by-one or chunk-by-
chunk. In the following section, we review KB-IELM, one 
of the online learning model proposed based on the ker-
nelized RELM.

2.2 � Kernel based incremental extreme learning 
machine (KB‑IELM)

Based on the kernelized RELM, Kernel based incremental 
extreme learning machine (KB-IELM) is proposed to deal 
with the problem of training data coming one-by-one or 
chunk-by-chunk [52]. Two stages (which we call the initial 
and online stage) are contained in the online learning of 
KB-IELM. Here we introduce these two stages.

•	 In the initial stage, supposing that the initial data 
chunk (�0,�0) contains N0 training instances, 
�0 = [x1,… , xN0

]T ,�0 = [t1,… , tN0
]T. The Lagrange 

matrix �(0) and the output function f 0(x) are in 

(4)� =
(
��T +

1

C
�N×N

)−1

�.

(5)� = �T
(
��T +

1

C
�N×N

)−1

�.

(6)f (x) = �Th(x) = TT
(
��T +

1

C
�N×N

)−1

�h(x).

(7)Prediction(x) = argmax
k∈{1,…,m}

fk(x).

(8)f (x) = �T
(
� +

1

C
�N×N

)−1[
k(x1, x),… , k(xN , x)

]T
.
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Eqs.  (9) and (10). �0 represents the N0 × N0 Gram 
matrix with respect to the chunk (�0,�0).

•	 In the online stage, supposing that the first data 
chunk (X1,�1) contains N1 training instances, 
�1 =

[
xN0+1

,… , xN0+N1

]T
,�1 =

[
tN0+1

,… , tN0+N1

]T
. 

The Lagrange matrix �(1) becomes:

where as

�1 represents the N1 × N1 Gram matrix with respect to 
the chunk (�1,�1). �01 represents a N0 × N1 matrix in 
which 

(
�01

)
ij
= k

(
xi, xN0+j

)
, i = 1,… ,N0, j = 1,… ,N1. 

According to the block matrix inverse formula [53], The 
Lagrange matrix �(1) is calculated by:

where as

It is easy to see that �(0) = �−1
11
�0. In other words, �−1

11
 

is already computed in the initial stage. To compute �(1)

, we only need to invert a matrix of N1 × N1 in Eq. (14c). 
Meanwhile, the output function f 1(x) is:

After that, if another new data chunk 
(
�n,�n

)
 comes, 

repeat steps (13)–(15) to update the output function 
f n(x).

(9)�(0) =
(
�0 +

1

C
�N0×N0

)−1

�0,

(10)f 0(x) =
(
�(0)

)T[
k(x1, x),… , k(xN0

, x)
]T
.

(11)�(1) =

[
A11

�T
12

�12

�22

]−1[
�0

�1

]
,

(12)

⎧⎪⎨⎪⎩

�11 = �0 +
1

C
�N0×N0

�12 = �01

�22 = �1 +
1

C
�N1×N1

,

(13)�(1) =

[
�11

�T
12

�12

�22

][
�0

�1

]
,

(14a)�11 = �−1
11

+ �−1
11
�12

(
�22 − �T

12
�−1

11
�12

)−1
�T

12
�−1

11
,

(14b)�12 = −�−1
11
�12

(
�22 − �T

12
�−1

11
�12

)−1
,

(14c)�22 =
(
�22 − �T

12
�−1

11
�12

)−1
.

(15)f 1(x) =
(
�(1)

)T[
k
(
x1, x

)
,… , k

(
xN0+N1

, x
)]T

.

3 � Online kernelized and regularized extreme 
learning machine (OKRELM)

3.1 � Motivation

In this section, we will think of the update process from a dif-
ferent perspective. � is a N × m matrix, whose rows increase 
in the online stage when the training instances come continu-
ously. In this section, we change the notations a little bit dif-
ferent from those in Sect. 2.2.

•	 In the initial stage, supposing that the initial data chunk 
(�0,�0) also contains N0 training instances. Therefore, 
let the Lagrange matrix corresponding to (�0,�0) in this 
stage be �(0)

0
, where the superscript represents the stage 

and the subscript represents the data chunk. After the ini-
tial training is finished, �(0)

0
, �0, and the output function 

f 0(x) can be computed by:

Replace �0�
T
0
 by the Gram matrix �0 and �0h(x) by 

the kernel form, we have:

•	 In the online stage, supposing that the first coming data 
chunk (�1,�1) also contains N1 training instances. At this 
time, the Lagrange matrix �(1) =

[
�
(1)

0
,�

(1)

1

]T
, in which 

�
(1)

0
 and �(1)

1
 correspond to (�0,�0) and (�1,�1), respec-

tively. According to Eq. (4) we have:

Equation (18) is equivalent to the following two equations:

(16a)�
(0)

0
=
(
�0�

T
0
+

1

C
�N0×N0

)−1

�0,

(16b)�0 = �T
0
�
(0)

0
,

(16c)

f 0(x) = �T
0
h(x) → f 0(x)

= �T

0

(
�0�

T

0
+

1

C
�
N0×N0

)−1

�0h(x).

(17a)�
(0)

0
=
(
�0 +

1

C
�N0×N0

)−1

�0,

(17b)�0 = �T
0
�
(0)

0
,

(17c)

f 0(x) = �T
0

(
�0 +

1

C
�N0×N0

)−1[
k
(
x1, x

)
,… , k

(
xN0

, x
)]T

.

(18)

([
�0

�1

][
�0

�1

]T
+

1

C
�(N0+N1)×(N0+N1)

)[
�
(1)

0

�
(1)

1

]
=

[
�0

�1

]
.



Int. J. Mach. Learn. & Cyber.	

1 3

�
(1)

0
can be represented by �(1)

1
 in a manner of:

Equation (20) is substituted in Eq.  (19b), we can solve 
�
(1)

1
 in a way of:

�n is defined by:

�0 is equal to Eq.  (23) according to the Sherman–Mor-
rison–Woodbury (SMW) formula [54].

(19a)

(
�0�0

T +
1

C
�N0×N0

)
α
(1)

0
+�0�1

Tα
(1)

1
= �0,

(19b)�1�0
T�

(1)

0
+
(
�1�1

T +
1

C
�N1×N1

)
�
(1)

1
= �1,

(20)�
(1)

0
= �

(0)

0
−
(
�0�0

T +
1

C
�N0×N0

)−1

�0�1
T�

(1)

1
.

(21)�
(1)

1
= C

(
IN1×N1

+�1�0�1
T
)−1(

�1 −�1�0
)
,

(22)�n =

⎧
⎪⎪⎨⎪⎪⎩

⎛⎜⎜⎜⎝

⎡
⎢⎢⎣

�0

⋮

�n

⎤
⎥⎥⎦

T⎡
⎢⎢⎣

�0

⋮

�n

⎤
⎥⎥⎦
+

1

C
�L×L

⎞⎟⎟⎟⎠

−1

, n = 1, 2,…

�
�0

T�0 +
1

C
�L×L

�−1

, n = 0

,

In fact, �n cannot be saved owing to the implicit map-
ping while using kernels. Therefore, we define a new func-
tion gn(x, y) which can be saved during the online stage:

Therefore, the new output function f 1(x) can 
be updated based on the old one f 0(x) by Eq.  (28). 
g1
(
�1, x

)
=
[
g1
(
x1, x

)
,… , g1

(
xN1

, x
)]T.

Generally, f n(x) is updated by f n−1(x) according to:

To summarize,

(26)f 1(x) = f 0(x) +
(
�1 − f 0(�1)

)T
�1�1h(x).

(27)gn(x, y) = h(x)T�nh(y).

(28)f 1(x) = f 0(x) +
(
�1 − f 0

(
�1

))T
g1
(
�1, x

)
.

(29)
f n(x) = f n−1(x) +

(
�n − f n−1

(
�n

))T
gn
(
�n, x

)
, n = 1, 2,…

(30a)

f n(x) =

⎧⎪⎨⎪⎩

f n−1(x) +
�
�n − f n−1

�
�n

��T
gn
�
�n, x

�
, n = 1, 2,…

�T
0

�
�0�

T
0
+

1

C
�N0×N0

�−1

�0h(x), n = 0
,

(30b)gn(x, y) =

⎧⎪⎨⎪⎩

gn−1(x, y) − gn−1
�
x,�n

��
�Nn×Nn

+ gn−1
�
�n,�n

��−1
gn−1

�
�n, y

�
, n = 1, 2,…

C

�
h(x)Th(y) − h(x)T�0

T
�
�0�0

T +
1

C
�N0×N0

�−1

�0h(y)

�
, n = 0

.

According to Eq. (3a), �1 can be represented by:

(23)

�0 =
(
�0

T�0 +
1

C
�
L×L

)−1

= C

(
�
L×L −�0

T
(
�0�0

T +
1

C
�
N0×N0

)−1

�0

)
.

Equations  (20)–(21) are substituted into Eq.  (24). By 
making use of the SMW Formula again, �1 can also be rep-
resented by:

According to Eq. (6), we can get f 1(x) by:

(24)�1 =

[
�0

�1

]T[
�
(1)

0

�
(1)

1

]
= �0

Tα
(1)

0
+�1

T�
(1)

1
.

(25)�1 = �0 + �1�1
T
(
�1 −�1�0

)
.

Replace the Equations (30a) and (30b) by the kernel 
form, we have:

If f n−1
(
�n

)
= �n, f n(x) equals to f n−1(x) according to 

Eq. (31a). Therefore, there is absolutely no need to update 
the output function. What if f n−1

(
�n

)
≠ �n but all �n (or a 

majority of them) can be correctly predicted using f n−1(x)? 
It seems we do not need to update the output function all 
the time. In the following section, we propose when to 
update and how to select a subset of the new data chunk to 
update.

(31a)

f n(x) =

⎧⎪⎨⎪⎩

f n−1(x) +
�
�n − f n−1

�
�n

��T
gn
�
�n, x

�
, n = 1, 2,…

�T
0

�
�0 +

1

C
�N0×N0

�−1�
k
�
x1, x

�
,… , k

�
xN0

, x
��T

, n = 0
,

(31b)gn(x, y) =

⎧⎪⎨⎪⎩

gn−1(x, y) − gn−1
�
x,�n

��
�Nn×Nn

+ gn−1
�
�n,�n

��−1
gn−1

�
�n, y

�
, n = 1, 2,…

C

�
k(x, y) −

�
k
�
x, x1

�
,… , k

�
x, xN0

���
�0 +

1

C
�N0×N0

�−1�
k
�
x1, y

�
,… , k

�
xN0

, y
��T�

, n = 0
.
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3.2 � The proposed OKRELM

Considering the large amounts of computation during the 
online stage and the high possibility of redundant data 
contained in the new data chunk. We propose the Online 
Kernelized and Regularized Extreme Learning Machine 
(OKRELM). The main contribution of OKRELM is the 
model updating. When new data chunk comes, we firstly 
predict their labels using the current model. If some of 
them are misclassified, we will update the output function 
based on only the misclassified ones. Figure 1 illustrates the 
main pipeline of OKRELM. The algorithm of OKRELM is 
shown in Table 1.

 
It consists of the initial and online stages during the 

training process of OKRELM, which is similar to the other 
online learning methods. During the initial stage, a Gram 
matrix is firstly computed according to the initial data chunk 
with N0 instances, then we attain the output function by 
inverting a matrix of N0 × N0 (Eqs. 32–33).The Gram matrix 
is updated first every time new data come in the online 
stage. Then we predict the labels of instances in the new 
data chunk using the current output function (Eqs. 34–35). 
After that, all the misclassified instances can be gathered 

into a subset for update by comparing the predictions with 
the ground truth (Eq. 36). In the end, we update the output 
function with those misclassified instances in the subset 
(Eq. 38). When another data chunk comes, repeat the steps 
in the online stage to update the output function.

Both the approaches in [41, 51] and OKRELM tackle 
the expensive storage requirement in the training phase and 
expensive time consumption in the testing process when 
experienced with the kernels. Their differences are listed 
as follows: (a) The approach in [41] is a batch learning 
model, whereas the approach in [51] and the OKRELM in 
this paper are especially proposed for incremental learning. 
(b) Authors in [41] selected a subset of training samples as 
prototypes by solving an optimization problem to decrease 
the large storage requirement; about 10% initial data are 
randomly selected to generate the initial model, and the 
data with high confidence levels are chosen from the data 
streams to update the model in [51]. For OKRELM, we 
use all the available data to initialize, and choose only the 
misclassified samples from each incremental data chunk to 
update the model in the online stage.

4 � Performance evaluation

4.1 � Data description and preprocess

We employ the Daily and Sports Activities Data Set 
(DSADS) [55] from UCI Machine Learning Repository to 
validate the performance of OKRELM. This dataset contains 
19 daily and sports activities [(1) sitting,(2) standing, (3) 
lying on back, (4) lying on right side, (5) ascending stairs, (6) 
descending stairs, (7) standing in an elevator still, (8) mov-
ing around in an elevator, (9) walking in a parking lot, (10) 
walking on a treadmill with a speed of 4 kmh, (11) walking 
in flat and 15° inclined positions, (12) running on a tread-
mill with a speed of 8 kmh, (13) exercising on a stepper, (14) 
exercising on a cross trainer, (15) cycling on an exercise bike 
in horizontal positions, (16) cycling on an exercise bike in 
vertical positions, (17) rowing, (18) jumping, (19) playing 
basketball] performed by eight participants (four males and 
four females). Contributors explored the potential of record-
ing activities on five different body parts (torso, right arm, 
left arm, right leg and left leg) with three-axial accelerom-
eter, three-axial gyroscope and three-axial magnetometer 
on each part respectively. Each participant performed each 
activity in his own style. That produced 45 sensor readings 
per frame (3 × 5 × 3).

Features are extracted from every sensor. Firstly, we 
combine the three axes of one sensor together using 
a =

√
x2 + y2 + z2. Then we exploit the sliding window 

technique to extract features (window length = 5  s [55]). 

Fig. 1   Main pipeline of OKRELM
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27 features from both time and frequency domain are 
extracted (see Table 2), leading to 405 dimensions in total 
(27 × 3 × 5 = 405). After feature extraction, we perform 
Principal Component Analysis (PCA) to reduce the dimen-
sions to 30 [55]. Specifications of the DSADS dataset is 
shown in Table 3.

4.2 � Parameter selection

Gaussian kernel 
(
k(xi, xj) = exp( − xi − xj

2∕g)
)
 is used 

for RELM, KB-IELM and OKRELM. Therefore, we need 
to find the optimal value combination for two parameters 
(penalty parameter C and kernel parameter g). Grid search 

Table 1   The OKRELM 
algorithm
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technique is employed and 50 different values {2−24, 2−23, 
…, 224, 225} are tried for both C and g. The optimal value 
combination of (C, g) is chosen from 2500 pairs.

We divide the DSADS dataset into the training and test-
ing sets using repeated random sub-sampling (RRSS) tech-
nique [56]. That is, for all the instances of each class of 
each user, one-third is randomly selected at the testing set 
and the other two-thirds are used as the training set. There-
fore, the training set and testing set consist of 6080 and 
3040 instances, respectively.

For each pair of (C, g), the RELM, KB-IELM and 
OKRELM models are all learned. For KB-IELM, 1000 
training instances are randomly selected as the initial data 
chunk, a series of data chunks with random size are ran-
domly generated in the online stage. Figure  2 shows the 
testing accuracy of RELM, KB-IELM and OKRELM.

From the results in Fig. 2 we can see that, performance 
of RELM varies smoothly in the parameter space. KB-
IELM and OKRELM are consistent with RELM in some 
places while inconsistent with RELM in the other places. 
Therefore, the optimal value of (C, g) is chosen to be (22, 
24) corresponding to the highest and consistent testing 
accuracy. In the following section, all experiments are run 
with the optimal values for the penalty parameter C and 
kernel parameter g.

4.3 � Experimental results and analysis

4.3.1 � Robustness comparison with different initial 
and online chunk size

In order to evaluate the robustness of our proposed model, 
firstly we introduce two important concepts: initial trunk 
size and online trunk size. Initial trunk size refers to the 
number of training instances contained in the initial chunk 
while online trunk size means the number of training 
instances contained in each online chunk. In the experi-
ments, we train KB-IELM and OKRELM with the initial 
chunk size taking values from {100, 200, 300,…, 2000} 
and the online chunk size taking values from {50, 100, 
150,…, 1000}. Training and testing sets are generated 
using the RRSS technique as in Sect. 4.2. The whole pro-
cess is repeated five times and results are averaged and 
shown in Fig. 3.

From the results in Fig.  3 we can see that: Given a 
random initial chunk size, the accuracies of both KB-
IELM and OKRELM firstly grow with the increasing 
online chunk size, then converge to a high performance 
and remain stable at last. If we fix the online chunk size, 
the increase trend is not straightforward when the ini-
tial chunk size grows. Therefore, compared with the ini-
tial chunk size, the online chunk size has a much stronger 
influence on the final performance of both classifiers. To 
be more specific, KB-IELM needs an online chunk size of 
larger than 700 to achieve an accuracy of about 90%, while 
OKRELM only needs 250 (no matter whether misclassified 
or not). What’s more, OKRELM may require less than 250 
instances per chunk according to results in Sect.  4.3.3. In 
other words, OKRELM is less sensitive and more robust 
than KB-IELM when used to construct a generic AR 
model. Once the online chunk size is satisfied, both KB-
IELM and OKRELM can achieve a satisfactory predictive 

Table 2   Features extracted per 
sensor on each body part

ID Feature Description

1 Mean Average value of samples in window
2 STD Standard deviation
3 Minimum Minimum
4 Maximum Maximum
5 Mode The value with the largest frequency
6 Range Maximum minus minimum
7 Mean crossing rate Rate of times signal crossing the mean value
8 dc Direct component
9–13 Spectrum peak position First five peaks after FFT
14–18 Frequency Frequencies corresponding to the five peaks
19 Energy Square of norm
20–23 Four shape features Mean, STD, skewness, kurtosis
24–27 Four amplitude features Mean, STD, skewness, kurtosis

Table 3   Specifications of the 
DSADS dataset

Name DSADS dataset

Class number 1–19
User number 1–8
Total data size 9120
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performance comparable to the RELM no matter how 
many instances are contained in the initial chunk.

4.3.2 � Accuracy and time consumption comparison 
with RRSS split

To compare the effectiveness and efficiency of KB-IELM 
and OKRELM, we record their predictive accuracy on the 
testing set as the online chunk size increases. In the mean-
time, we also keep tracking of their time consumption 
during training and testing stages. Based on the results in 
Sect. 4.3.1, the initial chunk size is set to 100 and the online 
chunk size is set to 700. Training and testing sets are gener-
ated using the RRSS technique as in Sect. 4.2. The whole 
process is repeated five times and results are averaged and 
shown in Fig. 4.
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Fig. 2   Testing accuracy of RELM, KB-IELM and OKRELM with 
different parameter pairs. a RELM; b KB-IELM; c OKRELM

(a)

(b)

Fig. 3   Testing accuracy of KB-IELM  and OKRELM with different 
initial and online chunk sizes. a KB-IELM; b OKRELM
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The predictive performance of KB-IELM and OKRELM 
is extremely low (5.25%, see Fig.  4a) at the beginning 
owing to the sparse initial training data (100 instances from 
19 classes). As the incremental data chunks coming, the 
accuracy grows continuously and finally achieves a preci-
sion similar to RELM (94.53%). It verifies that the perfor-
mance of online learning models KB-IELM and OKRELM 
can converge to the accuracy of the batch model RELM. 
The accuracy of OKRELM is a bit lower (3.97%) than that 
of KB-IELM, because large amounts of training data from 
the data chunks have been eliminated for OKRELM from 
updating the model compared with KB-IELM. Those data 
eliminated might not be unhelpful. However, such an elimi-
nation in OKRELM saves 46.49% training time and 74.61% 
testing time compared with KB-IELM (see Fig.  4b). It 
makes OKRELM a lightweight and effective AR model for 
mini-wearable devices.

4.3.3 � Accuracy and time consumption comparison 
with LOO split

To view the personalization learning probability, we com-
pare the effectiveness and efficiency of KB-IELM and 
OKRELM which are trained initially based on seven users’ 
data while updated and validated on the 8th user’s data. 
The leave one subject out (LOO) cross validation technique 
[56] is used to generate the training and testing datasets. 
For each user’s instances, one-half is used for updating the 
model (50 instances per chunk owing to the limitations 
instance number of one single user), and the other half is 
used as the testing set and 100 instances of the other seven 
users are randomly selected as the initial training set. The 
experiment is run 20 times for each user and the predictive 
performances are averaged and shown in Fig. 5.

All in all, the trends of accuracy in Fig. 5 are nearly the 
same for different users. Performances of KB-IELM and 
OKRELM improve at the beginning with KB-IELM a bit 
more accurate than OKRELM. During the last four chunks, 
the performance of KB-IELM goes down and becomes 
fluctuate while OKRELM becomes gradually convergent 
and stable in the predictive accuracy. To better observe and 
analyze, the results in Fig.  5 are averaged and shown in 
Fig. 6a. Besides, Fig. 6b shows the averaged time consump-
tions in the training and testing stages.

The predictive performance of OKRELM increases 
steadily along with the update process which is similar to 
the results in Fig.  4a. The results of OKRELM are very 
interesting since the chunk size in the online stage is only 
50 (data of about 4.16  min, 50 instances × 5  s), which is 
less than needed (250, see the discussion in Sect.  4.3.1). 
Therefore, it reveals the robust performance of OKRELM 
in transforming a generic model into a personalized model. 
For KB-IELM, its accuracy increases faster in the first 
place, goes down abruptly and becomes fluctuant in the end. 
The reason of the superiority of KB-IELM at the beginning 
of the online stage has been discussed in Sect. 4.3.2. The 
fluctuation phenomenon of KB-IELM again confirms our 
conclusion in Sect. 4.3.1 that the performance of KB-IELM 
might be unstable when the chunk size is not large. To 
be more specific, KB-IELM requires about 700 instances 
(data of about 58.33 min, 700 instances × 5 s) each chunk 
to assure the update process going in a positive way (the 
accuracy will increase after the update). When chunk size 
is not enough (say 50 in our experiment), it is more likely 
to decrease for KB-IELM. Considering the jogger example 
introduced in the Introduction, KB-IELM updates every 
58.33 min to attain a stable performance while OKRELM 
can update every 4.16 min. Therefore, OKRELM is more 
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Fig. 5   The predictive accuracy 
of KB-IELM and OKRELM on 
the datasets of different users 
with LOO split
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User 5 User 6
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suitable for real-time update. Meanwhile, the time effi-
ciency of OKRELM during the training process (Fig.  6b) 
is much more straightforward compared with the results in 
Fig. 4b. Specifically, the time consumption in the training 
stage of OKRELM is only 7.18% of the time consumption 
in the training stage of KB-IELM. OKRELM saves 38.17% 
time compared with KB-IELM during the prediction stage. 
That is, OKRELM is more suitable to predict user’s on-
going activity in real-time.

To summarize, OKRELM is more stable and efficient 
than KB-IELM when used to construct a personalized AR 
model.

5 � Conclusion

In this paper, we propose OKRELM, an online kernelized 
and regularized extreme learning machine for activity rec-
ognition using mini-wearable devices. OKRELM is more 
efficient than the related online learning models during both 
the training and prediction processes, and effective which is 
comparable to the batch mode model. Experimental results 
on an online UCI activity recognition dataset show the effi-
ciency and effectiveness of the proposed OKRELM.

When a generic classifier is updated towards a personal-
ized model by making use of online data of the target user, 
it may experience the class imbalance problem that large 
amounts of data in the upcoming chunk are from a few 
classes. In the future, we plan to modify the OKRELM to 
better suit the class imbalance problem in wearable activity 
recognition.
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