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a b s t r a c t 

Sensor-based activity recognition seeks the profound high-level knowledge about human activities from 

multitudes of low-level sensor readings. Conventional pattern recognition approaches have made tremen- 

dous progress in the past years. However, those methods often heavily rely on heuristic hand-crafted 

feature extraction, which could hinder their generalization performance. Additionally, existing methods 

are undermined for unsupervised and incremental learning tasks. Recently, the recent advancement of 

deep learning makes it possible to perform automatic high-level feature extraction thus achieves promis- 

ing performance in many areas. Since then, deep learning based methods have been widely adopted for 

the sensor-based activity recognition tasks. This paper surveys the recent advance of deep learning based 

sensor-based activity recognition. We summarize existing literature from three aspects: sensor modal- 

ity, deep model, and application. We also present detailed insights on existing work and propose grand 

challenges for future research. 

© 2018 Elsevier B.V. All rights reserved. 
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. Introduction 

Human activity recognition (HAR) plays an important role in

eople’s daily life for its competence in learning profound high-

evel knowledge about human activity from raw sensor inputs.

uccessful HAR applications include home behavior analysis [61] ,

ideo surveillance [50] , gait analysis [21] , and gesture recogni-

ion [31] . There are mainly two types of HAR: video-based HAR and

ensor-based HAR [13] . Video-based HAR analyzes videos or images

ontaining human motions from the camera, while sensor-based

AR focuses on the motion data from smart sensors such as an ac-

elerometer, gyroscope, Bluetooth, sound sensors and so on. Due to

he thriving development of sensor technology and pervasive com-

uting, sensor-based HAR is becoming more popular and widely

sed with privacy well protected. Therefore, in this paper, our main

ocus is on sensor-based HAR. 

HAR can be treated as a typical pattern recognition (PR) prob-

em. Conventional PR approaches have made tremendous progress

n HAR by adopting machine learning algorithms such as deci-

ion tree, support vector machine, naive Bayes, and hidden Markov

odels [34] . It is no wonder that in some controlled environments

here there are only a few labeled data or certain domain knowl-

dge is required (e.g. some disease issues), conventional PR meth-
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ds are fully capable of achieving satisfying results. However, in

ost daily HAR tasks, those methods may heavily rely on heuris-

ic hand-crafted feature extraction, which is usually limited by hu-

an domain knowledge [5] . Furthermore, only shallow features

an be learned by those approaches [66] , leading to undermined

erformance for unsupervised and incremental tasks. Due to those

imitations, the performances of conventional PR methods are re-

tricted regarding classification accuracy and model generalization.

Recent years have witnessed the fast development and ad-

ancement of deep learning, which achieves unparalleled perfor-

ance in many areas such as visual object recognition, natural

anguage processing, and logic reasoning [35] . Different from tradi-

ional PR methods, deep learning can largely relieve the effort on

esigning features and can learn much more high-level and mean-

ngful features by training an end-to-end neural network. In addi-

ion, the deep network structure is more feasible to perform unsu-

ervised and incremental learning. Therefore, deep learning is an

deal approach for HAR and has been widely explored in existing

ork [3,33,47] . 

Although some surveys have been conducted in deep learn-

ng [5,35,58] and HAR [7,34] , respectively, there has been no spe-

ific survey focusing on the intersections of these two areas. To

ur best knowledge, this is the first article to present the recent

dvance on deep learning based HAR. We hope this survey can

rovide a helpful summary of existing work, and present potential

uture research directions. 
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Fig. 1. An illustration of sensor-based activity recognition using conventional pattern recognition approaches. 
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The rest of this paper is organized as follows. In Section 2 , we

briefly introduce sensor-based activity recognition and explain why

deep learning can improve its performance. In Sections 3, 4 and 5 ,

we review recent advance of deep learning based HAR from three

aspects: sensor modality, deep model, and application, respectively.

We also introduce several benchmark datasets. Section 6 presents

summary and insights on existing work. In Section 7 , we discuss

some grand challenges and feasible solutions. Finally, this paper is

concluded in Section 8 . 

2. Background 

2.1. Sensor-based activity recognition 

HAR aims to understand human behaviors which enable the

computing systems to proactively assist users based on their re-

quirement [7] . Formally speaking, suppose a user is performing

some kinds of activities belonging to a predefined activity set A :

A = { A i } m 

i =1 (1)

where m denotes the number of activity types. There is a sequence

of sensor reading that captures the activity information 

s = { d 1 , d 2 , · · · , d t , · · · d n } (2)

where d t denotes the sensor reading at time t . 

We need to build a model F to predict the activity sequence

based on sensor reading s 

ˆ A = { ̂  A j } n j=1 = F(s ) , ˆ A j ∈ A (3)

while the true activity sequence (ground truth) is denoted as 

A 

∗ = { A 

∗
j } n j=1 , A 

∗
j ∈ A (4)

where n denotes the length of sequence and n ≥ m . 

The goal of HAR is to learn the model F by minimizing the dis-

crepancy between predicted activity ˆ A and the ground truth activ-

ity A 

∗. Typically, a positive loss function L (F( s ) , A 

∗) is constructed

to reflect their discrepancy. F usually does not directly take s as

input, and it usually assumes that there is a projection function �

that projects the sensor reading data d i ∈ s to a d -dimensional fea-

ture vector �( d i ) ∈ R 

d . To that end, the goal turns into minimizing

the loss function L (F(�( d i )) , A 

∗) . 
Fig. 1 presents a typical flowchart of HAR using conventional

PR approaches. First, raw signal inputs are obtained from several
Please cite this article as: J. Wang et al., Deep learning for sensor-based
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ypes of sensors (smartphones, watches, Wi-Fi, Bluetooth, sound

tc.). Second, features are manually extracted from those readings

ased on human knowledge [4] , such as the mean, variance, DC ,

nd amplitude in traditional machine learning approaches [25] . Fi-

ally, those features serve as inputs to train a PR model to make

ctivity inference in real HAR tasks. 

.2. Why deep learning? 

Conventional PR approaches have made tremendous progress in

AR [7] . However, there are several drawbacks to conventional PR

ethods. 

Firstly, the features are always extracted via a heuristic and

and-crafted way, which heavily relies on human experience or

omain knowledge. This human knowledge may help in certain

ask-specific settings, but for more general environments and tasks,

his will result in a lower chance and longer time to build a suc-

essful activity recognition system. 

Secondly, only shallow features can be learned according to hu-

an expertise [66] . Those shallow features often refer to some sta-

istical information including mean, variance, frequency and am-

litude etc. They can only be used to recognize low-level activities

ike walking or running , and hard to infer high-level or context-

ware activities [67] . For instance, having coffee is more complex

nd nearly impossible to be recognized by using only shallow fea-

ures. 

Thirdly, conventional PR approaches often require a large

mount of well-labeled data to train the model. However, most

f the activity data are remaining unlabeled in real applica-

ions. Thus, these models’ performance is undermined in unsuper-

ised learning tasks [5] . In contrast, existing deep generative net-

orks [24] are able to exploit the unlabeled samples for model

raining. 

Moreover, most existing PR models mainly focus on learning

rom static data; while activity data in real life are coming in

tream, requiring robust online and incremental learning. 

Deep learning tends to overcome those limitations. Fig. 2 shows

ow deep learning works for HAR with different types of networks.

ompared to Fig. 1 , the feature extraction and model building pro-

edures are often performed simultaneously in the deep learning

odels. The features can be learned automatically through the net-

ork instead of being manually designed. Besides, the deep neural

etwork can also extract high-level representation in deep layer,

hich makes it more suitable for complex activity recognition
 activity recognition: A Survey, Pattern Recognition Letters (2018), 
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Fig. 2. An illustration of sensor-based activity recognition using deep learning approaches. 

Table 1 

Sensor modalities for HAR tasks. 

Modality Description Examples 

Body-worn Worn by the user to describe the body movements Smartphone, watch, or band’s accelerometer, gyroscope etc. 

Object Attached to objects to capture objects movements RFID, accelerometer on cup etc. 

Ambient Applied in environment to reflect user interaction Sound, door sensor, WiFi, Bluetooth etc. 

Hybrid Crossing sensor boundary Combination of types, often deployed in smart environments 

t  

g  

m  

l  

w  

m  

(

3

 

s  

A  

a  

T

3

 

H  

c  

a  

m  

t  

m

 

H  

m  

u  

p  

I  

m  

t

3

 

m  

s  

u  

h  

c  

i  

p  

i  

f

 

w  

c  

d

3

 

h  

s  

a  

D  

m  

v

 

t  

i  

p  

s  

t

asks. When faced with a large amount of unlabeled data, deep

enerative models [24] are able to exploit the unlabeled data for

odel training. What’s more, deep learning models trained on a

arge-scale labeled dataset can usually be transferred to new tasks

here there are few or none labels. In the following sections, we

ainly summarize the existing work based on the pipeline of HAR:

a) sensor modality , (b) deep model , and (c) application . 

. Sensor modality 

Although some HAR approaches can be generalized to all sen-

or modalities, most of them are only specific to certain types.

ccording to [8] , we mainly classify those modalities into three

spects: body-worn sensors, object sensors , and ambient sensors .

able 1 briefly outlines all the modalities. 

.1. Body-worn sensor 

Body-worn sensors are one of the most common modalities in

AR. Those sensors are often worn by the users, such as an ac-

elerometer, magnetometer, and gyroscope. The acceleration and

ngular velocity are changed according to human body move-

ents; thus they can infer human activities. Those sensors can of-

en be found on smart phones, watches, bands, glasses, and hel-

ets. 

Body-worn sensors were widely used in deep learning based

AR [10,27,47,66,70] . Among those work, the accelerometer is

ostly adopted. Gyroscope and magnetometer are also frequently

sed together with the accelerometer. Those sensors are often ex-

loited to recognize activities of daily living (ADL) and sports.

nstead of extracting statistical and frequency features from the

ovement data, the original signal is directly used as inputs for

he network. 
Please cite this article as: J. Wang et al., Deep learning for sensor-based
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.2. Object sensor 

Object sensors are usually placed on objects to detect the

ovement of a specific object [8] . Different from body-worn sen-

ors which capture human movements, object sensors are mainly

sed to detect the movement of certain objects in order to infer

uman activities. For instance, the accelerometer attached to a cup

an be used to detect the drinking water activity. Radio frequency

dentifier (RFID) tags are typically used as object sensors and de-

loyed in smart home environment [15,61,66] and medical activ-

ties [38,63] . The RFID can provide more fine-grained information

or more complex activity recognition. 

It should be noted that object sensors are less used than body-

orn sensors due to the difficulty in its deployment. Besides, the

ombination of object sensors with other types is emerging in or-

er to recognize more high-level activities [67] . 

.3. Ambient sensor 

Ambient sensors are used to capture the interaction between

umans and the environment. They are usually embedded in users’

mart environment. There are many kinds of ambient sensors such

s radar, sound sensors, pressure sensors, and temperature sensors.

ifferent from object sensors which measure the object move-

ents, ambient sensors are used to capture the change of the en-

ironment. 

Several literature used ambient sensors to recognize daily ac-

ivities and hand gesture [31,33,63] . Most of the work was tested

n the smart home environment. Same as object sensors, the de-

loyment of ambient sensors is also difficult. In addition, ambient

ensors are easily affected by the environment, and only certain

ypes of activities can be robustly inferred. 
 activity recognition: A Survey, Pattern Recognition Letters (2018), 
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Table 2 

Deep learning models for HAR tasks. 

Model Description 

DNN Deep fully-connected network, artificial neural network with deep layers 

CNN Convolutional neural network, multiple convolution operations for feature extraction 

RNN Recurrent neural network, network with time correlations and LSTM 

DBN/RBM Deep belief network and restricted Boltzmann machine 

SAE Stacked autoencoder, feature learning by decoding-encoding autoencoder 

Hybrid combination of some deep models 
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3.4. Hybrid sensor 

Some work combined different types of sensors for HAR. As

shown in [23] , combining acceleration with acoustic information

could improve the accuracy of HAR. Ambient sensors are also used

together with object sensors; hence they can record both the ob-

ject movements and environment state. [61] designed a smart

home environment called A-Wristocracy , where a large number of

fine-grained and complex activities of multiple occupants can be

recognized through body-worn, object, and ambient sensors. It is

obvious that the combination of sensors is capable of capturing

rich information of human activities, which is also possible for a

real smart home system in the future. 

4. Deep model 

In this section, we investigate the deep learning models used in

HAR tasks. Table 2 lists all the models. 

4.1. Deep neural network 

Deep neural network (DNN) is developed from artificial neural

network (ANN). Traditional ANN often contains very few hidden

layers (shallow) while DNN contains more (deep). With more lay-

ers, DNN is more capable of learning from large data. DNN usually

serves as the dense layer of other deep models. For example, in a

convolution neural network, several dense layers are often added

after the convolution layers. In this part, we mainly focus on DNN

as a single model, while in other sections we will discuss the dense

layer. 

[61] first extracted hand-engineered features from the sensors,

then those features are fed into a DNN model. Similarly, [62] per-

formed PCA before using DNN. In those work, DNN only served as

a classification model after hand-crafted feature extraction, hence

they may not generalize well. And the network was rather shal-

low. [21] used a 5-hidden-layer DNN to perform automatic feature

learning and classification with improved performance. Those work

indicated that, when the HAR data is multi-dimensional and activ-

ities are more complex, more hidden layers can help the model

train well since their representation capability is stronger [5] .

However, more details should be considered in certain situations

to help the model fine-tune better. 

4.2. Convolutional neural network 

Convolutional Neural Network (ConvNets, or CNN) leverages

three important ideas: sparse interactions, parameter sharing, and

equivariant representations [35] . After convolution, there are usu-

ally pooling and fully-connected layers, which perform classifica-

tion or regression tasks. 

CNN is competent to extract features from signals and it has

achieved promising results in image classification, speech recogni-

tion, and text analysis. When applied to time series classification

like HAR, CNN has two advantages over other models: local depen-

dency and scale invariance. Local dependency means the nearby
Please cite this article as: J. Wang et al., Deep learning for sensor-based

https://doi.org/10.1016/j.patrec.2018.02.010 
ignals in HAR are likely to be correlated, while scale invariance

efers to the scale-invariant for different paces or frequencies. Due

o the effectiveness of CNN, most of the surveyed work focused on

his area. 

When applying CNN to HAR, there are several aspects to be

onsidered: input adaptation, pooling , and weight-sharing . 

1) Input adaptation . Unlike images, most HAR sensors produce

ime series readings such as acceleration signal, which is temporal

ulti-dimensional 1D readings. Input adaptation is necessary be-

ore applying CNN to those inputs. The main idea is to adapt the

nputs in order to form a virtual image . There are mainly two types

f adaptation: model-driven and data-driven . 

• Data-driven approach treats each dimension as a channel, then

performs 1D convolution on them. After convolution and pool-

ing, the outputs of each channel are flattened to unified DNN

layers. A very early work is [70] , where each dimension of the

accelerometer was treated as one channel like RGB of an im-

age, then the convolution and pooling were performed sep-

arately. [66] further proposed to unify and share weights in

multi-sensor CNN by using 1D convolution in the same tem-

poral window. Along with this line, [10] resized the convolu-

tion kernel to obtain the best kernel for HAR data. Other simi-

lar work include [21,48,57] . This data-driven approach treats the

1D sensor reading as a 1D image, which is simple and easy to

implement. The disadvantage of this approach is the ignorance

of dependencies between dimension and sensors, which may

influence the performance. 
• Model-driven approach resizes the inputs to a virtual 2D im-

age so as to adopt a 2D convolution. This approach usually

pertains to non-trivial input tuning techniques. [19] combined

all dimensions to form an image, while [27] designed a more

complex algorithm to transform the time series into an image.

In [59] , pressure sensor data was transformed to the image via

modality transformation. Other similar work include [38,52] .

This model-driven approach can make use of the temporal cor-

relation of sensor. But the map of time series to image is non-

trivial task and needs domain knowledge. 

2) Pooling . The convolution-pooling combination is common in

NN, and most approaches performed max or average pooling after

onvolution [19,31,48] . Apart from avoiding overfitting, pooling can

lso speed up the training process on large data [5] . 

3) Weight-sharing . Weight sharing [57,69] is an efficient method

o speed up the training process on a new task. [70] utilized a re-

axed partial weight sharing technique since the signal appeared

n different units may behave differently. [18] adopted a CNN-pf

nd CNN-pff structure to investigate the performance of different

eight-sharing techniques. It is shown in those literature that par-

ial weight-sharing could improve the performance of CNN. 

.3. Autoencoder 

Autoencoder learns a latent representation of the input val-

es through the hidden layers, which can be considered as an

ncoding-decoding procedure. The purpose of autoencoder is to
 activity recognition: A Survey, Pattern Recognition Letters (2018), 
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earn more advanced feature representation via an unsupervised

earning schema. Stacked autoencoder (SAE) is the stack of some

utoencoders. SAE treats every layer as the basic model of autoen-

oder. After several rounds of training, the learned features are

tacked with labels to form a classifier. 

[2,63] used SAE for HAR, where they first adopted the greedy

ayer-wise pre-training [24] , then performed fine-tuning. Compared

o those works, [39] investigated the sparse autoencoder by adding

L divergence and noise to the cost function, which indicates that

dding sparse constraints could improve the performance of HAR.

he advantage of SAE is that it can perform unsupervised feature

earning for HAR, which could be a powerful tool for feature ex-

raction. But SAE depends too much on its layers and activation

unctions which may be hard to search the optimal solutions. 

.4. Restricted Boltzmann machine 

Restricted Boltzmann machine (RBM) is a bipartite, fully-

onnected, undirected graph consisting of a visible layer and a

idden layer [24] . The stacked RBM is called deep belief net-

ork (DBN) by treating every two consecutive layers as an RBM.

BN/RBM is often followed by fully-connected layers. 

In pre-training, most work applied Gaussian RBM in the first

ayer while binary RBM for the rest layers [20,33,47] . For multi-

odal sensors, [51] designed a multi-modal RBM where an RBM

s constructed for each sensor modality, then the output of all the

odalities are unified. [37] added pooling after the fully-connected

ayers to extract the important features. [15] used a contrastive

radient (CG) method to update the weight in fine-tuning, which

elps the network to search and convergence quickly in all direc-

ions. [72] further implemented RBM on a mobile phone for offline

raining, indicating RBM can be very light-weight. Similar to au-

oencoder, RBM/DBN can also perform unsupervised feature learn-

ng for HAR. 

.5. Recurrent neural network 

Recurrent neural network (RNN) is widely used in speech

ecognition and natural language processing by utilizing the tem-

oral correlations between neurons. LSTM (long-short term mem-

ry) cells are often combined with RNN where LSTM is serving as

he memory units through gradient descent. 

Few work used RNN for the HAR tasks [14,17,21,26] , where the

earning speed and resource consumption are the main concerns

or HAR. [26] investigated several model parameters first and then

roposed a relatively good model which can perform HAR with

igh throughput. [14] proposed a binarized–BLSTM–RNN model, in

hich the weight parameters, input, and output of all hidden lay-

rs are all binary values. The main line of RNN based HAR mod-

ls is dealing with resource-constrained environments while still

chieve good performance. 

.6. Hybrid model 

Hybrid model is the combination of some deep models. 

One emerging hybrid model is the combination of CNN and

NN. [44,68] provided good examples for how to combine CNN

nd RNN. It is shown in [44] that the performance of ‘CNN + re-

urrent dense layers’ is better than ‘CNN + dense layers’. Similar

esults are also shown in [59] . The reason is that CNN is able to

apture the spatial relationship, while RNN can make use of the

emporal relationship. Combining CNN and RNN could enhance the

bility to recognize different activities that have varied time span

nd signal distributions. Other work combined CNN with models

uch as SAE [77] and RBM [40] . In those work, CNN performs fea-

ure extraction, and the generative models can help in speeding up
Please cite this article as: J. Wang et al., Deep learning for sensor-based
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he training process. In the future, we expect there will be more

esearch in this area. 

. Applications 

HAR is always not the final goal of an application, but it serves

s an important step in many applications such as skill assessment

nd smart home assistant. In this section, we survey deep learning

ased HAR from the application perspective. 

.1. Featured applications 

Most of the surveyed work focused on recognizing activities of

aily living (ADL) and sports [10,53,56,70] . Those activities of sim-

le movements are easily captured by body-worn sensors. Some

esearch studied people’s lifestyle such as sleep [57] and respira-

ion [22,29] . The detection of such activities often requires some

bject and ambient sensors such as WiFi and sound, which are

ather different from ADL. 

It is a developing trend to apply HAR to health and disease is-

ues. Some pioneering work has been done with regard to Parkin-

on’s disease [20] , trauma resuscitation [37,38] and paroxysmal

trial fibrillation (PAF) [48] . Disease issues are always related to

he change of certain body movements or functions, so they can

e detected using corresponding sensors. 

Under those circumstances, the association between disease

nd activity should be given more consideration. It is important

o use the appropriate sensors. For instance, Parkinson’s disease is

ften related to the frozen of gait, which can be reflected by some

nertial sensors attached to shoes [20] . 

Other than health and disease, the recognition of high-level ac-

ivities is helpful to learn more resourceful information for HAR.

he movement, behavior, environment, emotion, and thought are

ritical parts in recognizing high-level activities. However, most

ork only focused on body movements in smart homes [15,61] ,

hich is not enough to recognize high-level activities. For instance,

61] combined activity and environment signal to recognize activ-

ties in a smart home, but the activities are constrained to body

ovements without more information on user emotion and state,

hich are also important. In the future, we expect there will be

ore research in this area. 

.2. Benchmark datasets 

We extensively explore the benchmark datasets for deep learn-

ng based HAR. Basically, there are two types of data acquisition

chemes: self data collection and public datasets . 

• Self data collection: Some work performed their own data col-

lection (e.g. [6,10,71,72] ). Very detailed efforts are required for

self data collection, and it is rather tedious to process the col-

lected data. 
• Public datasets: There are already many public HAR datasets

that are adopted by most researchers (e.g. [21,47,52] ). By sum-

marizing existing literature, we present several widely used

public datasets in Table 3 . 

. Summary and discussion 

Table 4 presents all the surveyed work in this article. We can

ake several observations based on the table. 

1) Sensor deployment and preprocessing. Choosing the suit-

ble sensors is critical for successful HAR. In surveyed literature,

ody-worn sensors serve as the most common modalities and ac-

elerometer is mostly used. The reasons are two folds. Firstly, a lot

f wearable devices such as smartphones or watches are equipped
 activity recognition: A Survey, Pattern Recognition Letters (2018), 
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Table 3 

Public HAR datasets (A = accelerometer, G = gyroscope, M = magnetometer, O = object sensor, AM = ambient sensor, ECG = electrocardiograph). 

ID Dataset Type #Subject S. Rate #Activity #Sample Sensor Reference 

D01 OPPORTUNITY ADL 4 32 Hz 16 701,366 A, G, M, O, AM [44] 

D02 Skoda Checkpoint Factory 1 96 Hz 10 22,0 0 0 A [47] 

D03 UCI Smartphone ADL 30 50 Hz 6 10,299 A, G [2] 

D04 PAMAP2 ADL 9 100 Hz 18 2,844,868 A, G, M [76] 

D05 USC-HAD ADL 14 100 Hz 12 2,520,0 0 0 A, G [27] 

D06 WISDM ADL 29 20 Hz 6 1,098,207 A [3] 

D07 DSADS ADL 8 25 Hz 19 1,140,0 0 0 A, G, M [73] 

D08 Ambient kitchen Food preparation 20 40 Hz 2 55,0 0 0 O [47] 

D09 Darmstadt Daily Routines ADL 1 100 Hz 35 24,0 0 0 A [47] 

D10 Actitracker ADL 36 20 Hz 6 2,980,765 A [70] 

D11 SHO ADL 10 50 Hz 7 630,0 0 0 A, G, M [27] 

D12 BIDMC Heart failure 15 125 Hz 2 > 20,0 0 0 ECG [76] 

D13 MHEALTH ADL 10 50 Hz 12 16,740 A, C, G [18] 

D14 Daphnet Gait Gait 10 64 Hz 2 1,917,887 A [21] 

D15 ActiveMiles ADL 10 50–200 Hz 7 4,390,726 A [53] 

D16 HASC ADL 1 200 Hz 13 NA A [23] 

D17 PAF PAF 48 128 Hz 2 230,400 EEG [48] 

D18 ActRecTut Gesture 2 32 Hz 12 102,613 A, G [66] 

D19 Heterogeneous ADL 9 10 0–20 0 Hz 6 43,930,257 A, G [68] 
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1 OPP 1, OPP 2, Skoda, and UCI smartphone follow the protocols in [21] , [47] , 

[70] , and [56] , respectively. OPP 1 used weighted f1-score; OPP 2, Skoda, and UCI 
with an accelerometer, which is easy to access. Secondly, the ac-

celerometer is competent to recognize many types of daily activi-

ties since most of them are simple body movements. Compared to

body-worn sensors, object and ambient sensors are better at recog-

nizing activities related to context and environment such as having

coffee . Therefore, it is suggested to use body-worn sensors (mostly

accelerometer+gyroscope) for ADL and sports activities. If the ac-

tivities are pertaining to some semantic meaning but more than

simple body movements, it is better to combine the object and am-

bient sensors. In addition, there are few public datasets for object

and ambient sensors probably because of privacy issues and de-

ployment difficulty of the data collecting system. We expect there

will be more open datasets regarding those sensors. 

Sensor placement is also important. Most body-worn sensors

are placed on the dominant wrist, waist, and the dominant hip

pocket. This placement strategy can help to recognize most com-

mon daily activities. However, when it comes to object and am-

bient sensors, it is critical to deploy them in a non-invasive way.

Those sensors are not usually interacting with users directly, so it

is critical to collect the data naturally and non-invasively. 

Before using deep models, the raw sensor data need to be pre-

processed accordingly. There are two important aspects. The first

aspect is sliding window . The inputs should be cut into individual

inputs according to the sampling rate. This procedure is similar to

conventional PR approaches. The second one is channels . Different

sensor modalities can be treated as separate channels, and each

axis of a sensor can also be a channel. Using multi-channel could

enhance the representation capability of the deep model since it

can reflect the hidden knowledge of the sensor inputs. 

2) Model selection. There are several deep models surveyed in

this article. Then, a natural question arises: which model is the best

for HAR? [21] did an early work by investigating the performance

of DNN, CNN and RNN through 40 0 0 experiments on some pub-

lic HAR datasets. We combine their work and our explorations to

draw some conclusions: RNN and LSTM are recommended to rec-

ognize short activities that have natural order while CNN is better

at inferring long-term repetitive activities [21] . The reason is that

RNN could make use of the time-order relationship between sen-

sor readings, and CNN is more capable of learning deep features

contained in recursive patterns. For multi-modal signals, it is bet-

ter to use CNN since the features can be integrated through multi-

channel convolutions [19,70,76] . While adapting CNN, data-driven

approaches are better than model-driven approaches as the inner

properties of the activity signal can be exploited better when the

s

Please cite this article as: J. Wang et al., Deep learning for sensor-based

https://doi.org/10.1016/j.patrec.2018.02.010 
nput data are transformed into the virtual image. Multiple convo-

utions and poolings also help CNN perform better. RBM and au-

oencoders are usually pre-trained before being fine-tuned. Multi-

ayer RBM or SAE is preferred for more accurate recognition. 

Technically there is no model which outperforms all the others

n all situations, so it is recommended to choose models based on

he scenarios. To better illustrate the performance of some deep

odels, Table 5 offers some results comparison of existing work

n public datasets in Table 3 1 In Skoda and UCI Smartphone pro-

ocols, CNN achieves the best performance. In two OPPORTUNITY

rotocols, DBN and RNN outperform the others. This confirms that

o models can achieve the best in all tasks. Moreover, the hybrid

odels tend to perform better than single models (DeepConvL-

TM in OPPORTUNITY 1 and Skoda). For a single model, CNN with

hifted inputs (Fourier transform) generates better results com-

ared to shifted kernels. 

. Grand challenges 

Despite the progress in previous work, there are still challenges

or deep learning based HAR. In this section, we present those

hallenges and propose some feasible solutions. 

A. Online and mobile deep activity recognition. Two critical

ssues are related to deep HAR: online deployment and mobile

pplication. Although some existing work adopted deep HAR on

martphone [33] and watch [6] , they are still far from online and

obile deployment. Because the model is often trained offline on

ome remote server and the mobile device only utilizes a trained

odel. This approach is neither real-time nor friendly to incremen-

al learning. There are two approaches to tackle this problem: re-

ucing the communication cost between mobile and server , and en-

ancing computing ability of the mobile devices . 

B. More accurate unsupervised activity recognition. The per-

ormance of deep learning still relies heavily on labeled sam-

les. Acquiring sufficient activity labels is expensive and time-

onsuming. Thus, unsupervised activity recognition is urgent. 

• Take advantage of the crowd. The latest research indicates that

exploiting the knowledge from the crowd will facilitate the task

[49] . Crowd-sourcing takes advantage of the crowd to anno-

tate the unlabeled activities. Other than acquiring labels pas-
martphone used accuracy. 
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Table 4 

Summation of existing works based on the three aspects: sensor modality, deep model and application (in literature order). 

Literature Sensor Modality Deep Model Application Dataset 

[2] Body-worn SAE ADL D03 

[3] Body-worn RBM ADL, factory, Parkinson D02, D06, D14 

[6] Body-worn, ambiemt RBM Gesture, ADL, transportation Self, D01 

[10] Body-worn CNN ADL Self 

[11] Body-worn CNN ADL D06 

[12] Body-worn DNN Parkinson Self 

[14] Body-worn RNN ADL D01, D04, Self 

[15] Object, ambient DBN ADL Self 

[16] Body-worn CNN ADL Self, D01 

[17] Body-worn, object, ambient RNN ADL, smart home D01, D02, D04 

[19] Body-worn CNN Factory, health D02, D13 

[18] Body-worn CNN ADL, health D13 

[20] Body-worn RBM Parkinson Self 

[21] Body-worn, object, ambient DNN, CNN, RNN ADL, smart home, gait D01, D04, D14 

[22] Body-worn CNN Gait Self 

[23] Body-worn, ambient RBM ADL, smart home D16 

[26] Body-worn RNN ADL D16 

[27] Body-worn CNN ADL D03, D05, D11 

[29] Ambient CNN Respiration Self 

[31] Ambient CNN Hand gesture Self 

[30] Body-worn CNN ADL Self 

[32] Body-worn, ambient RBM ADL, emotion Self 

[33] Ambient RBM ADL Self 

[36] Body-worn CNN ADL Self 

[37] Object RBM Patient resuscitation Self 

[38] Object CNN Patient resuscitation Self 

[39] Body-worn SAE ADL D03 

[40] Body-worn CNN, RBM ADL Self 

[41] Body-worn CNN ADL, gesture Self 

[42] Body-worn CNN ADL, smart home D01, D02 

[43] Body-worn RNN ADL, smart home D01, D02, D05, D14 

[44] Body-worn CNN, RNN ADL, gesture, posture, factory D01, D02 

[46] Body-worn CNN ADL Self 

[47] Body-worn, object RBM ADL, food preparation, factory D01, D02, D08, D14 

[48] Body-worn CNN PAF disease D17 

[51] Body-worn RBM ADL D19 

[52] Body-worn CNN ADL, factory D02, D06, D14, D15 

[53] Body-worn CNN ADL, factory, Parkinson D02, D06, D14, D15 

[54–56] Body-worn CNN ADL D03 

[57] Body-worn CNN, RNN, DNN ADL, sleep Self 

[59] Ambient CNN, RNN Gait NA 

[61] Body-worn, object, ambient DNN ADL Self 

[62] Body-worn DNN ADL D03 

[65] Body-worn, ambient CNN ADL, location Self 

[63] Object, ambient SAE ADL NA 

[66] Body-worn, object, ambient CNN ADL, smart home, gesture D01, D18 

[68] Body-worn, object CNN, RNN Cartrack, ADL Self, D19 

[69] Body-worn CNN ADL Self 

[70] Body-worn, ambient, object CNN ADL, smart home, factory D01, D02, D10 

[71] Body-worn DNN ADL Self 

[72] Body-worn RBM ADL Self 

[73] Body-worn DBN ADL, smart home D01, D05, D07 

[75] Object CNN Medical Self 

[74] Body-worn DNN ADL Self 

[77] Body-worn CNN, SAE ADL D04 

[76] Body-worn CNN ADL, heart failure D04, D14 
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recognize user state as well as more specific activities. 
sively, researchers could also develop more elaborate, privacy-

concerned way to collect useful labels. 
• Deep transfer learning. Transfer learning performs data annota-

tion by leveraging labeled data from other auxiliary domains

[13,45,64] . There are many factors related to human activity,

which can be exploited as auxiliary information using deep

transfer learning. Problems such as sharing weights between

networks, exploiting knowledge between activity related do-

mains, and how to find more relevant domains are to be re-

solved. 

C. Flexible models to recognize high-level activities. More

omplex high-level activities need to be recognized other than only

imple daily activities. It is difficult to determine the hierarchical

tructure of high-level activities because they contain more seman-
Please cite this article as: J. Wang et al., Deep learning for sensor-based
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ic and context information. Existing methods often ignore the cor-

elation between signals, thus they cannot obtain good results. 

• Hybrid sensor . Elaborate information provided by the hybrid

sensor is useful for recognizing fine-grained activities [61] . Spe-

cial attention should be paid to the recognition of fine-grained

activities by exploiting the collaboration of hybrid sensors. 
• Exploit context information . Context is any information that can

be used to characterize the situation of an entity [1] . Context

information such as Wi-Fi, Bluetooth, and GPS can be used to

infer more environmental knowledge about the activity. The ex-

ploitation of resourceful context information will greatly help to
 activity recognition: A Survey, Pattern Recognition Letters (2018), 
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Table 5 

Performance comparison of existing deep models. 

Protocol Model Result Reference 

OPP 1 b-LSTM-S 92.70 [21] 

CNN 85.10 [66] 

CNN 88.30 [44] 

DeepConvLSTM 91.70 [44] 

OPP 2 DBN 73.20 [47] 

CNN 76.80 [70] 

DBN 83.30 [73] 

Skoda CNN 86.10 [70] 

CNN 89.30 [3] 

DeepConvLSTM 95.80 [44] 

UCI smartphone CNN 94.61 [56] 

CNN 95.18 [27] 

CNN 94.79 [54] 

CNN 90.00 [55] 
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D. Light-weight deep models. Deep models often require lots

of computing resources, which is not available for wearable de-

vices. In addition, the models are often trained off-line which can-

not be executed in real-time. However, less complex models such

as shallow NN and conventional PR methods could not achieve

good performance. Therefore, it is necessary to develop light-

weight deep models to perform HAR. 

• Combination of human-crafted and deep features . Recent work in-

dicated that human-crafted and deep features together could

achieve better performance [47] . Some pre-knowledge about

the activity will greatly contribute to more robust feature learn-

ing in deep models [60] . Researchers should consider the pos-

sibility of applying two kinds of features to HAR with human

experience and machine intelligence. 
• Collaboration of deep and shallow models. Deep models have

powerful learning abilities, while shallow models are more ef-

ficient. The collaboration of those two models has the potential

to perform both accurate and light-weight HAR. Several issues

such as how to share the parameters between deep and shal-

low models are to be addressed. 

E. Non-invasive activity sensing. Traditional activity collection

strategies need to be updated with more non-invasive approaches.

Non-invasive approaches tend to collect information and infer ac-

tivity without disturbing the subjects and requires more flexible

computing resources. 

• Opportunistic activity sensing with deep learning. Opportunistic

sensing could dynamically harness the non-continuous activity

signal to accomplish activity inference [9] . In this scenario, back

propagation of deep models should be well-designed. 

F. Beyond activity recognition: assessment and assistant. Rec-

ognizing activities is often the initial step in many applications.

For instance, some professional skill assessment is required in fit-

ness exercises and smart home assistant plays an important role in

healthcare services. There is some early work on climbing assess-

ment [28] . With the advancement of deep learning, more applica-

tions should be developed to be beyond just recognition. 

8. Conclusion 

Human activity recognition is an important research topic in

pattern recognition and pervasive computing. In this paper, we sur-

vey the recent advance in deep learning approaches for sensor-

based activity recognition. Compared to traditional pattern recog-

nition methods, deep learning reduces the dependency on human-

crafted feature extraction and achieves better performance by au-

tomatically learning high-level representations of the sensor data.

We highlight the recent progress in three important categories:
Please cite this article as: J. Wang et al., Deep learning for sensor-based

https://doi.org/10.1016/j.patrec.2018.02.010 
ensor modality, deep model, and application. Subsequently, we

ummarize and discuss the surveyed research in detail. Finally, sev-

ral grand challenges and feasible solutions are presented for fu-

ure research. 
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