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Abstract

Deep unsupervised domain adaptation has recently received increasing attention from researchers. However, existing methods
are computationally intensive due to the computational cost of convolutional neural networks (CNN) adopted by most work.
There is no effective network compression method for such problem. In this paper, we propose a unified transfer channel
pruning (TCP) method for accelerating deep unsupervised domain adaptation (UDA) models. TCP method is capable of
compressing the deep UDA model by pruning less important channels while simultaneously learning transferable features
by reducing the cross-domain distribution divergence. Therefore, it reduces the impact of negative transfer and maintains
competitive performance on the target task. To the best of our knowledge, TCP method is the first approach that aims at
accelerating deep unsupervised domain adaptation models. TCP method is validated on two main kinds of UDA methods:
the discrepancy-based methods and the adversarial-based methods. In addition, it is validated on two benchmark datasets:
Office-31 and ImageCLEF-DA with two common backbone networks - VGG16 and ResNet50. Experimental results dem-
onstrate that our TCP method achieves comparable or better classification accuracy than other comparison methods while
significantly reducing the computational cost. To be more specific, in VGG16, we get even higher accuracy after pruning
26% floating point operations (FLOPs); in ResNet50, we also get higher accuracy on half of the tasks after pruning 12%
FLOPs for both discrepancy-based methods and adversarial-based methods.

Keywords Unsupervised domain adaptation - Transfer channel pruning - Accelerating

1 Introduction

Deep neural networks have significantly improved the per-
formance of diverse machine learning applications. How-
ever, in order to avoid overfitting and achieve better perfor-
mance, a large amount of labeled data is needed to train a
deep network. Since the manual labeling of massive training
data is usually expensive in terms of money and time, it is
urgent to develop effective algorithms to reduce the labeling
workload on the domain to be learned (i.e. target domain).
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A popular solution to solve the above problem is called
transfer learning, or domain adaptation [32, 45, 46], which
tries to transfer knowledge from well-labeled domains (i.e.
source domains) to the target domain. Specifically, unsuper-
vised domain adaptation (UDA) is considered more chal-
lenging since the target domain has no labels. The key is
to learn a discriminative model to reduce the distribution
divergence between domains.

Traditional methods perform adaptation by reweight-
ing samples from the source domain [2, 19], or seeking an
explicit feature space transformation that transforms the
source and target samples into the same feature space [31,
46]. Recent studies have indicated that deep networks can
learn more transferable features for domain adaptation [5,
48]. The latest advances have been achieved by embedding
domain adaptation modules in the pipeline of deep feature
learning to extract domain-invariant representations [8, 23,
25, 35, 41]. This is because that they take advantages of
CNN (convolutional neural networks) to learn more transfer-
able representations [23] compared to traditional methods.
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Fig.1 The framework of the proposed transfer channel pruning (TCP) method

Popular CNN architectures such as AlexNet [21], VGGNet
[38], and ResNet [14] are widely adopted as the backbone
networks for deep unsupervised domain adaptation methods.
Then, knowledge can be transferred to the target domain by
reducing the cross-domain distance such as maximum mean
discrepancy (MMD) [31] or KL divergence [31].

Recently, adversarial learning [11] has been successfully
embedded into deep networks to reduce distribution discrep-
ancy between the source and target domains. Prior advanced
adversarial adaptation methods [8, 29, 35, 43] have shown
promising results in several domain adaptation tasks. Exist-
ing adversarial domain adaptation methods either learn a
single domain discriminator to align the global source and
target distributions, or pay attention to align subdomains
based on multiple discriminators. For instance, domain-
adversarial Neural network (DANN) [8, 9] focuses on the
global adversarial learning, while multi-adversarial domain
adaptation (MADA) [35] pays attention to the subdomain
adaptation by training several domain classifiers.

Unfortunately, it is still challenging to deploy these deep
UDA models on resource constrained devices such as mobile
phones since there is a huge computational cost required
by these methods. In order to reduce resource requirement
and accelerate the inference process, a common solution is
network compression. Network compression methods mainly
include network quantization [36, 49], weight pruning [13,
15, 28], and low-rank approximation [4, 12]. Especially
channel pruning [15, 28], which is a type of weight pruning
and compared to other methods, it does not need special
hardware or software implementations. In addition, it can
reduce negative transfer by pruning some redundant chan-
nels, therefore it is a good choice for compressing deep UDA
models.

However, it is not feasible to apply the above network
compression methods directly to the UDA problems. The
reasons are two-fold. Firstly, these compression methods are
proposed to solve supervised learning problems, which is not
suitable for the UDA settings since there are no labels in the
target domain. Secondly, even if we can acquire some labels
manually, applying these compression methods directly to
UDA will result in negative transfer [32], since they fail
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to consider the distribution discrepancy between the source
and target domains. Currently, there is no effective network
compression method for UDA.

In this paper, we propose a unified network compression
method called transfer channel pruning (TCP) for acceler-
ating deep unsupervised domain adaptation models. The
general framework of our TCP method is shown in Fig. 1.
Starting from a deep unsupervised domain adaptation base
model, TCP method iteratively evaluates the importance of
channels with the transfer channel evaluation module and
remove less important channels for both source and tar-
get domains. TCP method is capable of compressing the
deep UDA model by pruning less important channels while
simultaneously learning transferable features by reducing the
cross-domain distribution divergence. Experimental results
demonstrate that TCP method achieves better classification
accuracy than other comparison pruning methods while
significantly reducing the computational cost. To the best
of our knowledge, our TCP method is the first approach to
accelerate the deep UDA models.

To summarize, the contributions of this paper are as
follows:

(1) We present our TCP method as a unified approach
for accelerating deep unsupervised domain adapta-
tion models. TCP method is a generic, accurate, and
efficient compression method that can be easily imple-
mented by most deep learning libraries.

(2) TCP method is able to reduce negative transfer by
considering the cross-domain distribution discrepancy
using the proposed transfer channel evaluation module.

(3) Extensive experiments on two public UDA datasets
demonstrate the significant superiority of our TCP
method.

2 Related work

Our work is mainly related to unsupervised domain adapta-
tion and network compression.
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2.1 Unsupervised domain adaptation

Unsupervised domain adaptation (UDA) is a specific area
of transfer learning [32, 45], which is to learn a discrimi-
native model in the presence of the domain-shifts between
domains. The main problem of UDA is how to reduce the
domain shift between the source and target domains. There
are many methods to tackle this problem: traditional (shal-
low) learning and deep learning.

Traditional (shallow) learning methods have several
aspects: (1) Subspace learning. Subspace alignment (SA)
[7] aligns the base vectors of both domains and subspace
distribution alignment (SDA) [40] extends SA by adding
the subspace variance adaptation. Gong et al. proposed
the Geodesic Flow Kernel (GFK) [10] to sample indefinite
points along the geodesic flow between domains. CORAL
[39] aligns subspaces in second-order statistics. (2) Distribu-
tion alignment. Pan et al. proposed the transfer component
analysis (TCA) method to align the marginal distributions
between domains. Based on TCA, joint distribution adap-
tation (JDA) [24] is proposed to match both marginal and
conditional distributions. Later works extend JDA by add-
ing regularization, structural consistency [17] and domain
invariant clustering [42]. But these works treat the two distri-
butions equally and fail to leverage the different importance
of distributions. Recently, Wang et al. proposed the manifold
embedded distribution alignment (MEDA) [45, 46] approach
to dynamically evaluate the different effect of marginal and
conditional distributions and achieved the state-of-the-art
results on domain adaptation.

As for deep learning methods, CNN can learn nonlinear
deep representations and capture underlying factors of vari-
ation between different tasks [1]. These deep representations
can disentangle the factors of variation, which enables the
transfer of knowledge between tasks.

Recent works on deep UDA approaches can be mainly
summarized into two cases [34]. The first case is the discrep-
ancy-based deep UDA approach, which assumes that fine-
tuning the deep network model with labeled or unlabeled tar-
get data can diminish the shift between the two domains. The
most commonly used methods for aligning the distribution
shift between the source and target domains are maximum
mean discrepancy (MMD), correlation alignment (CORAL)
[41], Kullback-Leibler (KL) divergence [50], among others.
The second case can be referred to as the adversarial-based
approach. In this case, a domain discriminator that classi-
fies whether a data point is drawn from the source or tar-
get domain is used to encourage domain confusion through
an adversarial objective to minimize the distance between
the source and target distributions [8]. Adversarial learn-
ing has been explored in generative adversarial networks
(GANS) [11]. In addition, generative multi adversarial net-
work (GMAN) [6] extends GANSs to multiple discriminators

including formidable adversary and forgiving teacher, which
significantly eases model training.

Recent works on deep UDA embed domain-adaptation
modules into deep networks to improve transfer performance
[9], where significant performance gains have been obtained.
UDA has wide applications in computer vision [16, 23] and
natural language processing and is receiving increasing
attention from researchers. In this paper, we concentrate on
accelerating both the discrepancy-based and adversarial-
based deep UDA approaches.

As far as we know, no previous UDA approach has
focused on the acceleration of the network.

2.2 Network compression

These years, for better accuracy, designing deeper and wider
CNN models has become a general trend, such as VGGNet
[38] and ResNet [14]. However, as the CNN grow bigger,
it is harder to deploy these deep models on resource con-
strained devices. Network compression becomes an efficient
way to solve this problem. Network compression methods
mainly include network quantization, low-rank approxima-
tion and weight pruning. Network quantization is good at
decreasing the presentation precision of parameters so as to
reduce the storage space. Low-rank approximation reduces
the storage space by low-rank matrix techniques, which is
not efficient for point-wise convolution [3]. Weight pruning
mainly includes two methods, neural pruning [13, 22] and
channel pruning [15, 27, 28].

Channel pruning methods prune the whole channel each
time, therefore it is fast and efficient than neural pruning
which removes a single neuron connection each time. It is
a structured pruning method, compared to network quanti-
zation and low-rank approximation, it does not introduce
sparsity to the original network structure and also does not
require special software or hardware implementations. It
has demonstrated superior performance compared to other
methods and many works [15, 27, 28] have been proposed
to perform channel pruning on pre-trained models with dif-
ferent kinds of criteria.

These above pruning methods mainly aim at supervised
learning problems, by contrast, there have been few studies
for compressing unsupervised domain adaptation models. As
far as we know, we are the first to study how to do channel
pruning for deep unsupervised domain adaptation.

The TCP method is primarily motivated by [28], while
our work is different from it. TCP method is presented for
pruning unsupervised domain adaptation models. To be
more specific, we take the discrepancy between the source
and target domains into consideration, therefore we can
prune the less important channels not just for the source
domain but also for the unlabeled target domain. We call
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this Transfer Channel Evaluation, which is highlighted in
yellow in Fig. 1.

3 Transfer channel pruning

In this section, we introduce the proposed Transfer Channel
Pruning (TCP) method.

3.1 Problem definition

Definition 1 In unsupervised domain adaptation, we are
given a source domain D = {(x}, y}) }:."z"l of n labeled exam-
ples and a target domain D, = {Xj’. };1;1 of n, unlabeled exam-
ples. D, and D, have the same label space, i.e. The marginal
distributions between two domains are different, i.e.
P(x,) # P,(x,). The goal of deep UDA is to design a deep
neural network that enables learning of transfer classifiers
y = f,(X)andy = f(X) to close the source-target discrep-
ancy and can achieve the best performance on the target
dataset.

For a pre-trained deep UDA model, its parameters can be
denoted as W. Here we assume the /,, convolutional layer has
an output activation tensor a, of size of h; X w; X k;, where k;
represents the number of output channels of the /,, layer, and
h; and w, stand for the height and width of feature maps of
the /,;, layer, respectively. Therefore, the goal of TCP method
is to prune a UDA model in order to accelerate it with com-
parable or even better performance on the target domain.
In this way, we can obtain smaller models that require less
computation complexity and memory consumption, which
can be deployed on resource constrained devices.

3.2 Motivation

We compress the deep UDA model using model pruning
methods for their efficiency. A straightforward model prun-
ing technique is a two-stage method, which first prunes the
model on the source domain with supervised learning and
then fine-tune the model on the target domain.

It is worth noting that there is not prior work to com-
press UDA models, as far as we know, we are the first to
study how to do channel pruning for UDA models and the
splitting two-stage method is probably the easiest method to
think of and be applied to compress UDA models. Because
existing channel pruning methods are usually for compress-
ing supervised learning models, thus it is natural to think
that channel pruning method can be applied to the source
domain first with supervised learning and then fine-tune for
the unlabelled target domain with the pruned model by UDA
methods. However, negative transfer [32] is likely to happen

@ Springer

during this pruning process since the discrepancy between
the source and target domains is ignored.

In this work, we propose a unified transfer channel prun-
ing (TCP) method to tackle such challenge. TCP method is
capable of compressing the deep UDA model by pruning
less important channels while simultaneously learning trans-
ferable features by reducing the cross-domain distribution
divergence. Therefore, TCP method reduces the impact of
negative transfer and maintains competitive performance on
the target task. In short, TCP method is a generic, accurate,
and efficient compression method that can be easily imple-
mented by most deep learning libraries.

To be more specific, Fig. 1 illustrates the main idea of
our TCP method. There are mainly three steps. Firstly,
TCP method learns the base deep UDA model through
base model building. The base model is fine-tuned with the
standard UDA criteria. Secondly, TCP method evaluates
the importance of channels of all layers with the transfer
channel evaluation and performs further fine-tuning. Specifi-
cally, the convolutional layers, which usually dominate the
computation complexity, are pruned in this step. Thirdly,
TCP method iteratively refines the pruning results and stops
after reaching the trade-off between accuracy and FLOPs
(i.e. computational cost) or parameter size.

3.3 Base model building

In this step, we build the base UDA models with deep neural
networks.

3.3.1 Deep adaptation networks

Deep neural networks have been successfully used in UDA
with state-of-the-art algorithms [9, 23, 43] in recent years.
Previous studies [43, 48] have shown that the features
extracted by deep networks are general at lower layers, while
specific at the higher layers since they are more task-specific.
Therefore, more transferable representations can be learned
by transferring the features at lower layers and then fine-tune
the task-specific layers. During fine-tuning, the cross-domain
discrepancy can be reduced by certain adaptation distance.
Since our main contribution is not designing new deep UDA
networks, we build the base model like most discrepancy-
based deep UDA approaches [23, 41, 44]. In the following,
we will briefly introduce the main idea of the base model,
and more details can be found in the original paper of these
discrepancy-based deep UDA approaches.

As shown in Fig. 2, we learn transferable features via
several convolutional and pooling layers (the blue and pur-
ple blocks). Then, the classification task can be accom-
plished with the fully-connected layers (the yellow blocks).
MMD (maximum mean discrepancy) [31] is adopted as the
adaptation loss in order to reduce domain shift. MMD has
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Fig.2 The basic architecture of 224x224x64
deep adaptation networks
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where H denotes RKHS (Reproducing Kernel Hilbert
Space) and ¢(-) denotes some feature map to map the origi-
nal samples to RKHS.

3.3.2 Domain-adversarial neural networks

In this case, a domain discriminator that classifies whether
a data point is drawn from the source or target domain is
used to encourage domain confusion through an adversar-
ial objective to minimize the distance between the source
and target distributions [8]. Domain adversarial adaptation
methods borrow the idea of GAN to help learn transferable
features.

As shown in Fig. 3, we learn transferable features via
domain adversarial learning. Our basic domain-adversarial
neural network consists of three parts: the feature extrac-
tor Gf (the blue blocks), the label classifier Gy (the green
blocks) and the domain discriminator G, (the orange blocks).
The adversarial learning procedure is a two-player game,
where the first player is the domain discriminator G, trained
to distinguish the source domain from the target domain,
and the second player is the feature extractor G, that tries
to confuse the domain discriminator by extracting domain-
invariant features. The two players are trained adversari-
ally: the parameters 6, of feature extractor G, are learned by
maximizing the loss of domain discriminator G, while the
parameters 8, of G, are trained by minimizing the loss of
the domain discriminator. In addition, the loss of the label
classifier G, is also minimized. The loss function can be
formalized as:

where 4 is a trade-off parameter. G, and L, are the label clas-
sifier and its loss, G, and L, are the domain classifier and its
loss, and d; is the domain label of the input sample x;.

Several popular architectures can serve as the backbone
network of the base model, such as AlexNet [21], VGGNet
[38], and ResNet [14]. After obtaining the base model, we
can perform channel pruning to accelerate the model.

3.4 Transfer channel evaluation

The goal of transfer channel evaluation is to iteratively eval-
uate the importance of output channels of layers in order
to prune the K least important channels. Here K is con-
trolled by users. In the pruning process, we want to preserve
and refine a set of parameters W’, which represents those
important parameters for both source and target domains.
Let L(D,, D,, W) be the cost function for UDA and W' = W
at the starting time. For a better set of parameters W/, we
want to minimize the loss change after pruning a channel a, ;.
This can be considered as an optimization problem. Here we
introduce the absolute difference of loss:

Label Classifier G,

Softmax y —'@

Z
Dontain Discriminator
d

—c—-B-—Q

Feature Extractor G

Fig.3 The basic architecture of deep domain-adversarial neural net-
works
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|AL(al,i)| = |L(D,, D,, a;;)— L(D,, D, a; = 0)|, 3)

which means the loss change after pruning the i,, channel of
the /,;, convolutional layer. In addition, we want to minimize
|AL(a, ;)| by selecting the appropriate channel a;;. Pruning
will stop until a trade-off between accuracy and pruning
object (FLOPs or parameter size) has been achieved.

However, it is hard to find a set of optimal parameters in
one go, because the search space is 2/W! which is too huge to
compute and try every combination. Inspired by [28], our
TCP method solves this problem with a greedy algorithm
by iteratively removing the K least important channels at
each time.

3.4.1 Criteria

Criteria is the criterion for judging the importance of chan-
nels. Since the key to channel pruning is to select the least
important channel, especially for UDA, we design the crite-
ria of TCP method carefully. There are many heuristic cri-
teria, including the L,-norm of filter weights, the activation
statistics of feature maps, mutual information between acti-
vations and predictions and Taylor expansion, etc. Here we
choose the first-order Taylor expansion as the base criteria
since its efficiency and performance has been verified in
[28] for pruning supervised learning models. Compared with
our TCP method, we also take pruning as an optimization
problem, however, the objective we want to optimize is the
final performance on the unlabeled target dataset. Therefore
we design our criteria in a different way which is better for
pruning deep UDA models.

According to Taylor’s theorem, the Taylor expansion at
point x = a can be computed as:

P o)
fo =1L p(,“) (x—ay +R, (), @)
p=0 '

where p denotes the p,, derivative of f(x) at point x = a and
the last item R,,(x) represents the p,, remainder. To approxi-
mate |AL(a;;)|, we can use the first-order Taylor expansion
near a;; = 0 which means the loss change after removing
a,;, then we can get:

la,|?

e o

fla,; =0)=f(a,)—f(a,) a,+

2 .
where £ is a value between 0 and a,;, and % ") is a
Lagrange form remainder which requires too much compu-
tation, therefore we abandon this item for accelerating the

pruning process. Then back to Eq. (3), we can get:

oL
L(D,,D,,a;; =0) = L(Dy, D,, ;) — K/,,’ ta 6)
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Then, we combine Egs. (3) and (6) and get the criteria G of
TCP method:

oL
G(a);) = |AL(31,,')| = Ja..

1i

tay;

: 7

which means the absolute value of product of the activa-
tion and the gradient of the cost function, and a;; can be
calculated as:

N
]

where N is the number of batch size.

3.4.2 Loss function of TCP method

To make our TCP method focus on pruning UDA models,
we simultaneously take the source domain and the unla-
beled target domain into consideration. The loss func-
tion of TCP method consists of two parts, L., (D,, W) and
L,ma(D,,D,,W). Here, L_,(D,, W) is a cross-entropy loss
which denotes the classification loss on source domain and

can be computed as:

C
D Piclog(ho(x)) ©)

c=1

Lcl.s(Ds"W) = -

Z|=

N
i=1
where C is the number of classes of source dataset, P; . is the
probability of x; belonging to class ¢, and A (x}) denotes the
probability that the model predicts x; as class c. In addition,
L,..(D,, D,, W) denotes the MMD loss between the source
and target domains that presented in Eq. (1). The total loss
function can be computed as:

L(D,,D,,W) = L,(D;,W)+pL,,.D;,D,, W), (10)
where

p=—"r -2 (11)
1 + e mEr

Here, f is a dynamic value which takes values in (0, 1).
i € (0,ITER) where ITER is the number of pruning itera-
tions. We design f in this way for two main reasons, on the
one hand, during the early stage of pruning, the weights
have not converged and keep unstable therefore the L, , is
too large and makes the pruned model hard to converge. On
the other hand, in the rest of the pruning process, the L, ,
becomes more important that can guide the pruned model
to focus more on the target domain. Therefore the criteria of
TCP method can be computed as:
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aLcls (Ds’ W) s

s Li
oa,

oL,,..D;,D,, W)
o,

G(ay) =
(12)

t
Li|?

+p
where a‘lY ; and a;[ denote the activation with source data and
target data respectively.

3.5 Iterative refinement

After the transfer channel evaluation, each channel is sorted
according to G(a;;) and the K least important channels are
removed after each pruning iteration. Then, a short-term
fine-tuning is adopted to the pruned model for 5 epochs to
help the model to converge and the pruning is done after a
trade-off between accuracy and FLOPs or parameter size
has been achieved. This step is done iferatively to prune the
network.

The learning procedure of TCP method is described in
Algorithm 1. Specifically, for a given UDA baseline W,
firstly fine-tune the UDA baseline until the best perfor-
mance achieved on the target dataset. Then, sort the chan-
nels according to their importance which is measured by
criteria Eq. (12) and remove the K least important channels.
Next, perform short-term fine-tuning to the pruned model
for 5 epochs to help the model to converge. These steps are
done iteratively to prune the network. Finally, a long-term
fine-tuning is adopted to increase the performance of the
final pruned model W'.

4 Experimental analysis

In this section, we evaluate the performance of TCP method
via experiments on pruning deep unsupervised domain adap-
tation models. We evaluate our approaches for VGGNet [38]
and ResNet [14] on two popular datasets—Office-31 [37]
and ImageCLEF-DA.! All our methods are implemented
based on the PyTorch [33] framework and the code will be
released soon at [47].

4.1 Datasets
4.1.1 Office-31

This dataset is a standard and maybe the most popular
benchmark for unsupervised domain adaptation. It consists
of 4110 images within 31 categories collected from eve-
ryday objects in an office environment. It consists of three
domains: Amazon (A), which contains images downloaded
from https://www.amazon.com/, Webcam (W) and DSLR
(D), which contain images respectively taken by web camera
and digital SLR camera under different settings. We evalu-
ate all our methods across six transfer tasks on all the three
domains A—» W, W— A, A—» D, D— A, D> W and W— D.

4.1.2 ImageCLEF-DA
This dataset is a benchmark dataset for ImageCLEF 2014

domain adaptation challenge, and it is collected by select-
ing the 12 common categories shared by the following

Algorithm 1 TCP: Transfer Channel Pruning

Ng

Input: Source domain D, = {(x7,y])}2,

W.

target domain D; = {x;

71, the baseline

Output: A pruned model W’ for deep unsupervised domain adaptation.
1: Fine-tune the unsupervised domain adaptation baseline until the best performance
achieved on the unlabeled target dataset;

2: for iteration i do

3:  Sort the importance of channels by criteria Eq. (12) and identify less significant

channels;

4:  Remove the K least important channels of the layers;

5:  Short-term fine-tune;

6:  if the trade-off between accuracy and FLOPs or parameter size has achieved
then

7 break

8  end if

9: end for

10: Long-term fine-tune;
11: return pruned model W'.

! http://imageclef.org/2014/adaptation
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public datasets and each of them is considered as a domain:
Caltech — 256 (C), ImageNet ILSVRC 2012 (I), Pas-
cal VOC 2012 (P) and Bing (B). There are 50 images in
each category and 600 images in each domain. We evalu-
ate all methods across six transfer tasks following existing
work [8,23,46]: I-P,P-1,I-C,C—1,P- Cand C— P.
Compared with Office-31, this dataset is more balanced and
can be a good comparable dataset to Office-31.

4.2 Implementation details

We mainly compare three methods: (1) Two_stage: which is
the most straightforward method that applies channel pruning
to the source domain task first, then fine-tune for the target
domain task with the pruned model. (2) TCP_w/o_DA: Our
TCP method without the MMD loss, here we call it domain
adaptation (DA) loss. Which also means f = 0 all the time
in Eq. (10). (3) TCP: Our full TCP method with DA loss.

We evaluate all the methods on two popular backbone
networks: VGG16 [38] and ResNet50 [14]. As baselines,
VGG16-based and ResNet50-based are the original models
that are not pruned. As for VGG16-based model, it has 13
convolutional layers and 3 fully-connected layers. We prune
all the convolutional layers and the first fully-connected layer
and we only use the activations of the second fully-con-
nected layer as image representation and build the MMD
loss which is shown in Fig. 2. In addition, as for ResNet50-
based model, we use similar settings as VGG16-based model
with a few differences. Because of the shortcut and residual
branch structure, we only prune the inside convolutional lay-
ers of each bottleneck block. The MMD loss is built with
the only fully-connected layer. Moreover, we also take the
Batch Normalization (BN) [20] layers into consideration and
reconstruct the whole model during pruning.

In practice, all the input images are cropped to a fixed size
224 x 224 and randomly sampled from the resized image
with horizontal flip and mean-std normalization. At first, we
fine-tune all the UDA models on each unsupervised domain
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adaptation tasks for 200 epochs with learning rate from 0.01
to 0.0001 and the batch size = 32. During pruning, we set
IC = 64 which means 64 channels will be removed after each
pruning iteration. Here we set C = 64 because we want to
speed up the pruning process while maintaining high accu-
racy. In fact, this is a tradeoff between accuracy and pruning
time. We analyze the effect of K value on the accuracy and
pruning time of the model and the result is shown in Fig. 4.

As can be seen, if we set K to a smaller value, we may
achieve better performance on the target domain, but we also
need more time to do the pruning and fine-tuning procedure
to get the same FLOPs reduction. In addition, if we set K to
a larger value, the pruning process can be accelerated while
the accuracy on the target domain can not be guaranteed.

After that, extra 5 epochs are adopted to help the pruned
model to converge. In addition, we follow [18, 26] to prune
the baseline with different compression rate. The VGG16-
based baseline is pruned with 26% and 70% FLOPs reduced
while the ResNet50-based baseline is pruned with 12% and
46% FLOPs reduced. ResNet50 has lower compression rate
since the bottleneck structure stops some layers from being
pruned. As for the VGG16-based and ResNet50-based base-
lines, they are the original well fine-tuned UDA models with-
out pruning. To be more specific, as for the VGG16-based
baseline, we build the UDA model as Fig. 2. The backbone
netowrk is VGG16 and MMD loss is built on the second
fully-connected layer to compare and align the distribution
between source and target domains. Then we fine-tune the
UDA model for 200 epochs with learning rate from 0.01 to
0.0001 and batch size = 32. In addition, as for the ResNet50-
based baseline, the structure is similar to the VGG16-based
baseline, we use ResNet50 as the backbone network and
MMD loss is built on the only fully-connected layer.

We follow standard evaluation protocol for UDA and use
all source examples with labels and all target examples with-
out labels [10]. The labels for the target domain are only
used for evaluation. We adopt classification accuracy on
the target domain and parameter reduction as the evalua-
tion metrics: higher accuracy and fewer parameters indicate
better performance.

4.3 Results and analysis

Discrepancy-based UDA model pruning Firstly, we evalu-
ate our TCP method on the discrepancy-based base model.
we first evaluate all the tasks on Office-31 dataset. The
results are shown in Table 1. As can be seen, the full TCP
method outperforms other methods in accuracy and F1
score under the same compression rate (FLOPs reduction)
and can reduce more parameters, and the bold indicates the
best results under the same compression rate. It is impor-
tant and interesting that TCP method achieves even better
performance than the baseline model (which is not pruned).
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This is probably because some redundant channels in the
base model are removed thus negative transfer is reduced.
Especially for the results of ResNet50-based models, our
ResNet50-based baseline achieves comparable or better
performance compared with the discrepancy-based deep
UDA approaches result of DDC [44] and DAN [23] in [25].
However, we can get better performance on half of the tasks
and we even get 100% on task W—D after 46% FLOPs have
been reduced.

Then, we evaluate our methods on ImageCLEF-DA dataset
and the results are shown in Table 2. We can draw the same
conclusion that our TCP method performs better on all tasks
on ImageCLEF-DA dataset. We get higher accuracy than
the baseline on all the VGG16-based experiments after 26%
FLOPs have been reduced, and we also get higher accuracy
on the target dataset on half of the tasks on ResNet50-based
experiments after 12% FLOPs have been reduced, compared
with the baseline which is almost the same as the discrepancy-
based deep UDA approaches results of DAN in [25].

Adversarial-based UDA model pruning As for the adver-
sarial-based base model, we also evaluate all the transfer
learning tasks on Office-31 and ImageCLEF-DA datasets.
The results are shown in Tables 3 and 4, which indicates that
our TCP method outperforms other methods under the same
compression rate (FLOPs reduction) and can reduce more
parameters while performing pruning on the adversarial-based
model. It is worth noting that TCP method achieves even
better performance than the VGG16-based baseline model
(which is not pruned). In addition, we also get higher accuracy
on the target dataset on most of the tasks on ResNet50-based
experiments after 12% FLOPs have been reduced. This is
probably because some redundant channels in the base model
are removed thus negative transfer is reduced.

Apart from Tables 1, 2, 3 and 4, Fig. 5 shows the compari-
son for all methods. Moreover, we also add a Random method
which randomly removes a certain number of channels to
achieve the same reduction of FLOPs. Combining these results,
more conclusions can be made. (1) Compared with Two_stage,

60 80 0 20 40 60
FLOPs reduction(%)

(b) ResNet50-based

TCP method is more efficient because it is a unified frame-
work and treat the pruning as a single optimization problem,
while Two_stage is a split method and it does not take the target
domain into consideration while pruning. (2) Compared with
TCP_w/o_DA, the full TCP method uses the transfer channel
evaluation to represent the discrepancy between the source and
target domains. We try to remove those less important chan-
nels for both source and target domains and reduce negative
transfer by reducing domain discrepancy. (3) As can be seen
from Fig. 5, our TCP method outperforms other methods on
unlabeled target dataset under different compression rate. (4)
Our TCP method outperforms other methods on pruning two
mainly kinds of UDA models: discrepancy-based models and
adversarial-based models. This indicates that TCP method is
generic, accurate, and efficient, which can dramatically reduce
the computational cost of a deep UDA model without sacrific-
ing the performance.

4.4 Acceleration analysis

Our proposed TCP method is capable of solving the acceler-
ation problem of UDA models. In this section we show more

Table 5 The acceleration analysis on task A—D

Models FLOPs| Time (ms) Speed-up
(%) (%)

VGG16-base (baseline) 0.263

TCP 26 0.187 28.90
TCP 70 0.168 36.10
ResNet50-base (baseline) 1.260

TCP 12 0.981 22.10
TCP 46 0.888 29.50

Here, FLOPs | denotes the decrement of FLOPs compared with the
baseline, time means the average processing time of one image during
inference. speed-up is the speed-up ratio compared with the baseline
model. The base model is a discrepancy-based model shown in Fig. 2
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Table 6 The acceleration analysis on task A—D

Models FLOPs| Time (ms) Speed-up
(%) (%)

VGG16-base (baseline) 0.244

TCP 26 0.200 18.00
TCP 70 0.181 25.80
ResNet50-base (baseline) 1.350

TCP 12 1.200 11.10
TCP 46 0.912 32.40

Here, the base model is an adversarial-based model shown in Fig. 3

details to present the acceleration degree of our TCP method
compared with the baselines. Here we perform acceleration
analysis on task A—D, and other tasks are the same. We
evaluate our TCP method on the discrepancy-based base
model and record the inference time to calculate the aver-
age inference time and speed-up ratio. Our experiments run
on a NVIDIA TITAN XP GPU and the result is shown in
Table 5. As can be seen, as for VGG16-based baseline, it can
be accelerated by 28.90% and 36.10% after 26% and 70%
FLOPs have been reduced with TCP respectively. In addi-
tion, as for ResNet50-based baseline, it can be accelerated

by 11.10% and 32.40% after 12% and 46% FLOPs have been
reduced respectively. Our TCP method is able to accelerate
the discrepancy-based UDA models.

We can draw the same conclusion that TCP method is
capable of accelerating the adversarial-based UDA models,
and the results are shown in Table 6.

4.5 Visualization analysis

To evaluate the effectiveness of TCP method in reducing
negative transfer, in Fig. 6, we follow [5] to visualize the
model activations of task A—W pruned by different meth-
ods using t-SNE [5]. Fig. 6a shows the results of ResNet50-
based baseline without pruning on the source domain. Fig-
ure 6b—d denote the result of ResNet50-based models on
the target domain, which have been pruned by 12% FLOPs
with our three methods Two_stage, TCP_w/o_DA and TCP
respectively. The colored digits represent the ground truth
of the examples, therefore the number is from 0 to 30, which
denotes target dataset has 31 categories. Here we randomly
pick 10 categories to visualize. As can be seen, the target
categories are discriminated much more clearly with the
model pruned by our TCP method. This suggests that our

B G [ 4 o
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Fig.6 The t-SNE visualization of network activations. a Is generated by ResNet50-based baseline without pruning on source domain. b—d Are
generated by ResNet50-based (with 12% FLOPs pruned) with our three methods on target domain respectively. Best view in color
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Fig.7 The pruned structure of all the 13 convolutional layers of VGG16-based network on different dataset for deep unsupervised domain adap-

tation. Best view in color
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TCP method is effective in learning more transferable fea-
tures by reducing the cross-domain divergence.

To explore if there is any pattern in the structure of the
pruned models, we show the structure of pruned models
on task A—W and I-P in Fig. 7 with TCP method, and
different color denotes different compression rate (FLOPs
reduction). The dark blue bars represent channels of the 13
convolutional layers of the VGG16-based baseline before
pruning. In addition, the light blue, green, orange and red
bars represent the channels of pruned model under different
compression rate respectively. As can be seen, higher layers
have more redundancy than lower layers in VGG16-based
models, and our TCP method prefer pruning the channels of
higher layers. This is reasonable for unsupervised domain
adaptation because the lower layers usually encode many
common and important features for both source and target
domains. Moreover, with more parameters in higher layers,
our TCP method thus can prune more parameters under the
same compression rate. The same result can be observed on
ResNet50-based models.

5 Conclusion and future work

In this paper, we propose a unified Transfer Channel Prun-
ing (TCP) method for accelerating deep unsupervised
domain adaptation models. TCP method is capable of
compressing the deep UDA model by pruning less impor-
tant channels while simultaneously learning transferable
features by reducing the cross-domain distribution diver-
gence. Therefore, it reduces the impact of negative transfer
and maintains competitive performance on the target task.
TCP method is a generic, accurate, and efficient compres-
sion method that can be easily implemented by most deep
learning libraries. Experimental results on two main kinds
of UDA methods (the discrepancy-based methods and the
adversarial-based methods) demonstrate the significant
superiority of our TCP method over other methods.

In the future, we plan to apply our TCP method to hetero-
geneous UDA problems.
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