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Abstract
Domain adaptation (DA) has achieved a resound-
ing success to learn a good classifier by leveraging
labeled data from a source domain to adapt to an
unlabeled target domain. However, in a general set-
ting when the target domain contains classes that
are never observed in the source domain, namely
in Open Set Domain Adaptation (OSDA), existing
DA methods failed to work because of the inter-
ference of the extra unknown classes. This is a
much more challenging problem, since it can eas-
ily result in negative transfer due to the mismatch
between the unknown and known classes. Exist-
ing researches are susceptible to misclassification
when target domain unknown samples in the fea-
ture space distributed near the decision boundary
learned from the labeled source domain. To over-
come this, we propose Joint Partial Optimal Trans-
port (JPOT), fully utilizing information of not only
the labeled source domain but also the discrimina-
tive representation of unknown class in the target
domain. The proposed joint discriminative pro-
totypical compactness loss can not only achieve
intra-class compactness and inter-class separabil-
ity, but also estimate the mean and variance of
the unknown class through backpropagation, which
remains intractable for previous methods due to
the blindness about the structure of the unknown
classes. To our best knowledge, this is the first op-
timal transport model for OSDA. Extensive exper-
iments demonstrate that our proposed model can
significantly boost the performance of open set do-
main adaptation on standard DA datasets.

1 Introduction
Deep learning recently has improved the progress of diverse
computer vision tasks such as image classification, object
detection and semantic segmentation with the help of large-
scale labeled datasets which is time and labor consuming to
collect. However, it is often highly difficult to achieve satis-
fying performance when transferring knowledge from label-
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rich domain (i.e., source domain) to label-scarce domain
(i.e., target domain), especially when there are unknown sam-
ples in the target domain. The characteristics of large scale
unlabeled data in the target domain can be different from the
labeled source domain, resulted in misclassification.

An underlying assumption in domain adaptation is that
samples in the target domain necessarily belong to the classes
observed in the source domain, from which we train the clas-
sifier. Since the target classes are often larger than training
classes in real-world settings, considering the open set do-
main problem could lead to more practical results and ap-
plications. Under this regime, the target domain consists of
subset of classes of the source domain and along with extra
unknown classes. The main task is seeking to classify data
of known classes correctly, and categorize the extra classes as
“unknown”. Lack of openness adaptation is a major critique
against OSPB [Saito et al., 2018].

We solve the problems above by a strategy based on the
optimal transport framework. Optimal transport has been
applied to closed set domain adaptation recently [S. and S.,
2016; Luo et al., 2017; Damodaran et al., 2018]. Damodaran
et al. recognized the strength of Convolutional Neural Net-
work (CNN) to obtain a scalable solution by learning jointly
the feature embedding between the two domains and the clas-
sifier in a single CNN framework. All previous OT based
methods align the whole source and target domains and per-
form badly for OSDA since data of unknown classes in the
target domain can make performance of domain adaptation
model even inferior to a model without adaptation. Such phe-
nomenon is known as negative transfer [Pan and Yang, 2010].
Unknown samples in the target domain need to be excluded
in the transfer to avoid negative transfer. To this end, we
propose a more flexible partial optimal transport framework
that allows for transportation in only well-matched pairs of
samples. We formulate the problem as transporting a frac-
tion of the “well-matched” mass of source domain onto the
target domain minimizing an overall displacement cost. We
eliminate the far-fetched pairings that cause negative trans-
fer in the global optimal coupling to obtain a partial optimal
coupling. Besides the regular displacement loss, the overall
displacement loss includes the loss for displacing to the un-
known class applied to the fraction of mass not transferred.
As a bonus, our method naturally adapts to different levels of
openness of the target domain, because fraction size selected

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

2540



from global coupling is data-adaptive.
Furthermore, we want to choose the feature representation

that leads to better generalization and robust performance.
For this goal, we include dispersion penalty for each class
so that samples are concentrated around the means of their
classes and therefore lie far from the decision boundary; we
add to the objective function the joint discriminative proto-
typical compactness loss, which provides a way to estimate
the mean and manipulate (shrink) the covariance of each class
(including the unknown class). We firstly estimate the mean
and variance for the unknown class from the residuals of our
partial optimal transport which was a challenge for previous
researchers as we are blind about the structure of unknown
classes. Experimental results show that JPOT works stably in
various datasets and outperforms existing methods.

2 Related Work

Closed Set Domain Adaptation (CSDA). Currently closed
set domain adaptation methods [Tzeng et al., 2014; Long et
al., 2015; Long et al., 2016] minimized the feature distribu-
tion discrepancy to alleviate performance degradation in both
source and target domains. Zellinger et al. [Zellinger et al.,
2017] achieved domain adaption by Central Moment Dis-
crepancy (CMD). Contrastive Adaptation Network (CAN)
[Kang et al., 2019] optimizes a new metric that explicitly
models the intra-class domain discrepancy and the inter-class
domain discrepancy. Transferrable Prototypical Networks
(TPN) [Pan et al., 2019] exploits the prototypical distance
[Snell et al., 2017] to avoid misclassification.

Open Set Domain Adaptation. OSDA differs from CSDA
by extra unknown classes in the target domain but not in the
source domain. Recently, researchers are concentrating on
open set recognition, intending to recognize “unknown” sam-
ples in the target domain during testing [Ganin and Lempit-
sky, 2015; Saito et al., 2018]. Separate to Adapt (STA) net-
work was proposed by [Liu et al., 2019] to adapt different
openness between source and target classes with coarse-to-
fine weighting mechanism. Universal Adaptation Network
[You et al., 2019] was proposed to quantify sample-level
transferability and recognize the “unknown” samples. How-
ever, all of them failed to solve the problem that target domain
samples were distributed near the decision boundary learned
from the source domain, leading to degraded performance.

Optimal Transport on Domain Adaptation. Optimal
transport has been applied in domain adaptation to align the
representations between the source domain and target do-
main [Courty et al., 2016; Yan et al., 2018]. As mentioned
above, the coupling γ [Courty et al., 2017] was applied to
transport the source samples to the target domain by an esti-
mated mapping. Deep Joint Optimal Transport (DeepJDOT)
[Damodaran et al., 2018] applied the coupling matrix γ to
transport the source samples to the target domain in discrimi-
native feature space, achieving high accuracy on many trans-
fer tasks. However, the discriminative representation of “un-
known” samples in the target domain has not been considered
in previous approaches that causes mismatching.

3 Methodology
Following the settings of OSDA [Liu et al., 2019], we define
a source domain Ds = {(xsi , ysi )}

ns
i=1 with ns labeled sam-

ples and a target domain Dt = {(xti)}
nt
i=1 with nt unlabeled

samples. The label space in the source domain is defined
as Cs, which is a subspace of target-domain label space Ct.
The target domain further contains additional classes Ctunk,
which are all referred as “unknown” since these classes are
absent in the source domain, i.e. Ct = Cs ∪ Ctunk. Data from
source and target domains can have different probability dis-
tributions p and q respectively (p 6= q). In OSDA, we further
observe that p 6= qCs , where qCs represents the probability
distribution of the target data belonging to shared classes Cs.

Following [Saito et al., 2018; Chen et al., 2019], we adopt
the two-stream CNN architecture with shared weights. We
propose joint partial optimal transport (JPOT) for open set
domain adaptation, which is an end-to-end method that learns
a feature generator Gf (·) and a classifier Gy(·) to separate
known and unknown classes in the target domain, as illus-
trated in Figure 2.

3.1 Partial Optimal Transport
Optimal transport for domain adaptation performs the align-
ment of the sample representations between the source do-
main and target domain [Courty et al., 2016]. However, ex-
isting optimal transport strategies fail to address the prob-
lem caused by the pair-wise transport error in pairing un-
known target samples to known source samples, resulting in
negative transfer of unknown classes in the target domain.
Despite similarities with the formulation [Damodaran et al.,
2018], we propose partial optimal transport strategy exploit-
ing global coupling matrix γ given by joint probability distri-
bution, which aims to identify the most correlated features of
shared classes between the source and target domains. More-
over, we utilize global optimal matrix to capture distinct fea-
tures of unknown class samples in the target domain and to
realize inter-class separability of unknown vs known classes.
The main procedure of JPOT is shown in the Figure 1.

The optimization of partial optimal transport is based on
partial Kantorovich problem [Angenent et al., 2003] seeking
for a general coupling γ ∈ X (Ds,Dt) between Ds and Dt:

γ∗ = arg min
γ∈X (Ds,Dt)

∫
Ds×Dt

M(xs,xt) dγ(xs,xt), (1)

where X (Ds,Dt) denotes the probability distribution be-
tween Ds and Dt. The cost function matrix M(xs, xt) =
||Gf (xs) − Gf (xt)||k denotes the cost to move probability
mass from xs to xt, where k = 2 [Damodaran et al., 2018].
The discrete formulation can be expressed as

γ∗ = arg min
γ∈X (Ds,Dt)

〈γ,M〉F , (2)

where γ∗ ∈ RN×N is the ideal coupling matrix between the
source and target domains, representing as a joint probabil-
ity measure with source data xs and target data xt. N is the
batchsize. The elements of each row of γ∗ are all zeros except
one equals 1. 〈·, ·〉F is the Frobenius dot product. To sepa-
rate data of unknown class from known classes in the target
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Figure 1: The necessity of the proposed method partial optimal transport for open set domain adaptation. Three colors denote three sets of
data. Red: Source samples; Deep Blue: Target common samples. Light Blue: Target unknown samples. The γ∗ denotes the optimal transport
solution on the global perception which indicates that the unknown samples will be negatively transported to the source domain. Adopting
partial optimal transport strategy, exploiting the mean cost ρ of the coupling matching. JDOT chooses the most reliable matching γ̂∗ for
partial domain alignment, eliminating negative transfer caused by unknown class. Best viewed in color.
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Figure 2: The proposed model JPOT for open set domain adap-
tation. The partial optimal transport loss Lp is adopted to exploit
the unknown target samples then avoid negative transfer. The joint
discriminative prototypical compactness loss Ld utilize the statis-
tics information on the target domain to make features more dis-
criminative. Note that the Gf denotes the CNN network and the
fully-connected layers to extract features in the bottleneck layer. Gy

denotes the output classification layers. Best viewed in color.

domain, we utilize the mean cost of optimal transport matrix
ρ to measure the similarity between each target sample and
each source sample

ρ =
1

N

N∑
j=1

N∑
i=1

γ∗i,jM(xsi ,x
t
j) :=

1

N

N∑
j=1

ρj , (3)

where N denotes the number of source samples which equals
that of target samples. If the coupling pair distance is bigger
than the mean cost ρ, it indicates that this coupling pair is
nontransferable. The partial optimal transport for open set
domain alignment can be defined as

γ̂∗i,j = γ∗i,j × h(M(xsi ,x
t
j), ρ),

h(M(xsi ,x
t
j), ρ) = 1− 1

2
(1 + sgn(M(xsi ,x

t
j)− ρ)),

(4)

where γ̂∗ represents partial coupling matrix for known classes
of both domains. sgn(x) = 1 when x > 0, and equals
−1 otherwise. Thus, we rank the similarity ρj for all target
samples and select samples with highest/lowest similarity to
align/separate. The loss for known classes in the source and
target domains can be defined as

Lkno
o =

∑
i,j

γ̂∗
i,j(||Gf (xs

i )−Gf (xt
j)||2), (5)

which means that the best matched pairs should be pulled
each other closely. Meanwhile, with samples “labeled as”
unknown class by partial coupling matrix, they should leave
away from known classes to avoid negative transfer

Lunk
o =

1

η

∑
i,j

∆γ∗
i,j log

(
1 + exp(−η(||Gf (xs

i )−Gf (xt
j)||2)

)
,

(6)
where ∆γ∗i,j = γ∗i,j − γ̂∗i,j denotes the residual set of the
partial optimal transport γ̂∗i,j . η denotes as a constant and
equals to 0.1 in the experiment. Therefore the partial optimal
transport loss Lp is given as

Lp = Lknoo + Lunko . (7)

3.2 Joint Discriminative Prototypical Compactness
Inspired by previous work [Herath et al., 2019], exploiting
discriminative statistics information on two domains will en-
hance the transfer performance. When the feature distribu-
tion, Ps of domain Ds, is parameterized with the mean µsz
and the covariance Σs

z

µs
z =

1

|Nz|

N∑
i=1

Gf (xs
i )δ(ysi = z),

Σs
z =

1

|Nz − 1|

N∑
i=1

(Gf (xs
i )− µs

z)(Gf (xs
i )− µs

z)T δ(ysi = z),

(8)
where z = {1, 2, · · · , k} denotes the corresponding shared
known classes, k denotes the number of classes inDs, δ(x) =
1 when x is True, and δ(x) = 0 when x is False. The variance
vanishes when there is only one sample in the batch. Due to
the lack of reliable labels in the target domain, it is difficult
to measure the unknown samples in the target domain dis-
tribution Pt. The most difficult task is to find the mean and
variance of unknown samples. According to the partial opti-
mal transport, we provide unknown index Uj to measure the
probability of sample xtj to be in the Unknown class.

Uj =

N∑
i=1

∆γ∗
i,j , (9)

The number of the unknown class samples can be given as

N t
unk =

N∑
j=1

Uj . (10)
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The mean µunk and the covariance Σunk can be described as

µt
unk =

1

N t
unk

N∑
j=1

Gf (xt
j)× Uj , (11)

Σt
unk =

1

|N t
unk − 1|

N∑
j=1

Uj×(Gf (xt
j)−µt

unk)(Gf (xt
j)−µt

unk)T .

(12)
To quantify spatial prototypical information in both do-
mains, we define µA = {µs1,µs2, · · · ,µsk,µtunk} and ΣA =
{Σs

1,Σ
s
2, · · · ,Σs

k,Σ
t
unk} for computation. Therefore µA ∈

R(k+1)×d and ΣA ∈ R(k+1)×d×d. d is the number of out-
put neurons in the bottleneck layer. The spatial prototypical
matrix D ∈ R(k+1)×N is defined as

D(z, j) =
e−d(Gf (x

t
j),µ

A
z )∑k+1

m=1 e
−d(Gf (xt

j),µ
A
m)
, (13)

where d(Gf (xtj),µ
A
z ) is the distance between the target sam-

ple Gf (xtj) and z-th class center µAz . Therefore, the Ma-
halanobis distance formulation of d(Gf (xtj),µ

A
z ) can be de-

fined as

d(Gf (xt
j),µ

A
z ) =

√
(Gf (xt

j)− µA
z )T (ΣA

z )−1(Gf (xt
j)− µA

z ).

(14)
The joint discriminative prototypical compactness loss Ld is
defined as

Ld = Ldc + Ldp, (15)

The Ldc denotes the centroid clustering loss in the source
class domain

Ldc =

N∑
i=1

∣∣∣∣∣∣Gf (xs
i )− µs

ys
i

∣∣∣∣∣∣2
2
. (16)

The Ldp denotes the prototypical compactness loss for the
target samples

Ldp =

k+1∑
z=1

N∑
j=1

D(z, j)F(Softmax(Gy(Gf (xt
j)), z)), (17)

where F(·, ·) denotes the cross-entropy loss. Furthermore,
we introduce an additional loss Lcls to minimize the proba-
bility of source samples to be misclassified as unknown class.

Lcls =

N∑
i=1

F(Softmax(Gy(Gf (xs
i ), k + 1)). (18)

In conclusion, the total loss of our JPOT model is
L = Lcls + αLp + βLd, (19)

where the α and β denote the trade-off parameters.
To calculate the statistic information, we adopt the incre-

mental learning strategy as follows:

µA(t)
accu. = m× µA(t−1)

accu. + (1−m)× µA(t),

ΣA(t)
accu. = m×ΣA(t−1)

accu. + (1−m)×ΣA(t),
(20)

where µA(t)
accu. and Σ

A(t)
accu. denote the accumulation results of

the mean and variance, 0 ≤ m ≤ 1 is the momentum hyper-
parameter for the accumulation.

4 Experiments
Now we evaluate our method with state-of-the-art domain
adaptation approaches on several benchmark datasets.

4.1 Setup
Digits contains three standard digit classification datasets:
MNIST [Lecun et al., 1998], USPS [Hull, 2002], and SVHN
[Netzer et al., 2011]. Each dataset consists of 10 classes of
digits, ranging from 0 to 9. Following the same evaluation
protocol of [Saito et al., 2018], we construct three open set
domain adaptation tasks and report adaptation results on the
test sets: SVHN→MNIST (one task) and MNIST↔USPS
(two tasks).
Office-31 [Saenko et al., 2010] is a standard dataset in com-
puter vision for domain adaptation which contains 4652 im-
ages from 31 categories with three domains: Amazon (A), We-
bcam (W) and DSLR (D). According to previous work [Liu
et al., 2019], we adopt the same set of known classes and un-
known classes in the target domain and evaluate all methods
on following four challenging settings: A↔W and A↔D.
Office-Home [Venkateswara et al., 2017] is a more chal-
lenging domain adaptation dataset which consists of around
15500 images from 65 object classes in 4 distinct domains:
Aetistic (Ar), Clipart (Cl), Product (Pr), and Real-Word
(Rw). We select (in alphabetic order) the first 25 classes as
known classes shared by the source and target domains [Saito
et al., 2018]. The 26-65 classes are regarded as the unknown
class. We report performances of all the 12 adaptation tasks
to enable thorough evaluations: Ar↔Cl, Ar↔Pr, Ar↔Rw,
Cl↔Pr, Cl↔Rw, and Pr↔Rw.
Compared Approaches. We mainly compare our proposal
with several open set recognition, domain adaptation and
open set domain adaptation methods as previous work [Liu et
al., 2019]: Open Set SVM(OSVM) [Jain et al., 2014], DANN
[Ganin and Lempitsky, 2015], RTN [Long et al., 2016],
OpenMAX [Bendale and Boult, 2016], MMD+OSVM,
DANN+OSVM, OSBP [Saito et al., 2018] and STA [Liu et
al., 2019]. MMD+OSVM and DANN+OSVM are two vari-
ants of OSVM that incorporate Maximum Mean Discrepancy
[Tzeng et al., 2014] and domain adversarial network [Ganin
and Lempitsky, 2015] in OSVM. In our experiments, we com-
pare the average accuracy of each method on five random ex-
periments.
Evaluation Metrics. Following previous works [Saito et
al., 2018], we employ four evaluation metrics for open set
domain adaptation: OS: the accuracy averaged over all the
classes including the unknown class as one class; OS*: the
accuracy averaged only on known classes; ALL: the accuracy
of all samples; UNK: the accuracy of unknown instances.

4.2 Implementation Details
For the experiments on Office-31 and Office-Home, our pro-
posal and the compared approaches are both trained by fine-
tuning with ResNet-50 [He et al., 2016] pre-trained on Im-
ageNet. And we adopt LeNet [Lecun et al., 1998] to inves-
tigate the efficacy of our framework for the experiments on
Digits datasets. We use all labeled source examples and un-
labeled examples for training.
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Method A→W A→D D→W W→D D→A W→A Avg

OS OS* OS OS* OS OS* OS OS* OS OS* OS OS* OS OS*

ResNet 82.5±1.2 82.7±0.9 85.2±0.3 85.5±0.9 94.1±0.3 94.3±0.7 96.6±0.2 97.0±0.4 71.6±1.0 71.5±1.1 75.5±1.0 75.2±1.6 84.2 84.4
RTN 85.6±1.2 88.1±1.0 89.5±1.4 90.1±1.6 94.8±0.3 96.2±0.7 97.1±0.2 98.7±0.9 72.3±0.9 72.8±1.5 73.5±0.6 73.9±1.4 85.4 86.8

DANN 85.3±0.7 87.7±1.1 86.5±0.6 87.7±0.6 97.5±0.2 98.3±0.5 99.5±0.1 100.0±.0 75.7±1.6 76.2±0.9 74.9±1.2 75.6±0.8 86.6 87.6
OpenMax 87.4±0.5 87.5±0.3 87.1±0.9 88.4±0.9 96.1±0.4 96.2±0.3 98.4±0.3 98.5±0.3 83.4±1.0 82.1±0.6 82.8±0.9 82.8±0.6 89.0 89.3

OSBP 86.5±2.0 87.6±2.1 88.6±1.4 89.2±1.3 97.0±1.0 96.5±0.4 97.9±0.9 98.7±0.6 88.9±2.5 90.6±2.3 85.8±2.5 84.9±1.3 90.8 91.3
STA 89.5±0.6 92.1±0.5 93.7±1.5 96.1±0.4 97.5±0.2 96.5±0.5 99.5±0.2 99.6±0.1 89.1±0.5 93.5±0.8 87.9±0.9 87.4±0.6 92.9 94.1

DeepJDOT 86.1±0.5 88.7±0.9 86.9±0.7 89.0±0.5 96.9±0.2 95.6±0.8 96.1±0.1 98.1±0.5 85.6±1.2 88.4±1.0 81.5±1.3 83.1±0.9 88.9 90.5
JPOT 92.8±0.6 92.2±0.4 95.2±0.9 96.0±0.6 98.1±0.3 96.2±0.4 99.5±0.1 98.6±0.2 93.0±0.7 94.1±0.4 88.9±1.0 88.4±0.4 94.6 94.3

Table 1: Classification accuracy (%) on Office-31 for open set domain adaptation (ResNet-50).

Method Ar→Cl Pr→Cl Rw→Cl Ar→Pr Cl→Pr Rw→Pr Cl→Ar Pr→Ar Rw→Ar Ar→Rw Cl→Rw Pr→Rw Avg

ResNet 53.4±0.4 52.7±0.6 51.9±0.5 69.3±0.7 61.8±0.5 74.1±0.4 61.4±0.6 64.0±0.3 70.0±0.3 78.7±0.6 71.0±0.6 74.9±0.9 65.3
DANN 54.6±0.7 49.7±1.6 51.9±1.4 69.5±1.1 63.5±1.0 72.9±0.8 61.9±1.2 63.3±1.0 71.3±1.0 80.2±0.8 71.7±0.4 74.2±0.4 65.4

OpenMax 56.5±0.4 52.9±0.7 53.7±0.4 69.1±0.3 64.8±0.4 74.5±0.6 64.1±0.9 64.0±0.8 71.2±0.8 80.3±0.8 73.0±0.5 76.9±0.3 66.7
OSBP 56.7±1.9 51.5±2.1 49.2±2.4 67.5±1.5 65.5±1.5 74.0±1.5 62.5±2.0 64.8±1.1 69.3±1.1 80.6±0.9 74.7±2.2 71.5±1.9 65.7
STA 58.1±0.6 53.1±0.9 54.4±1.0 71.6±1.2 69.3±1.0 81.9±0.5 63.4±0.5 65.2±0.8 74.9±1.0 85.0±0.2 75.8±0.4 80.8±0.3 69.5

DeepJDOT 56.7±0.8 50.4±1.1 53.7±1.2 67.1±1.4 64.4±0.8 76.2±0.7 62.5±0.6 64.9±1.2 72.5±1.0 82.1±0.7 74.0±0.5 77.1±0.6 66.8
JPOT 59.6±0.5 54.2±0.7 54.6±0.9 72.3±1.1 70.1±0.6 82.1±0.9 62.9±0.7 68.3±0.8 75.1±1.1 84.8±0.4 77.4±0.5 81.2±0.4 70.2

Table 2: Classification accuracy OS (%) on Office-Home for open set domain adaptation (ResNet-50).

Method SVHN→MNIST USPS→MNIST MNIST→USPS Avg

OS OS* ALL UNK OS OS* ALL UNK OS OS* ALL UNK OS OS* ALL UNK

OSVM 54.3 63.1 37.4 10.5 43.1 32.3 63.5 97.5 79.8 77.9 84.2 89.0 59.1 57.7 61.7 65.7
MMD+OSVM 55.9 64.7 39.1 12.2 62.8 58.9 69.5 82.1 80.0 79.8 81.3 81.0 68.0 68.8 66.3 58.4
DANN+OSVM 62.9 75.3 39.2 0.70 84.4 92.4 72.9 0.90 33.8 40.5 21.4 44.3 60.4 69.4 44.5 15.3

OSBP 63.0 59.1 71.0 82.3 92.3 91.2 94.4 97.6 92.1 94.9 88.1 78.0 82.4 81.7 84.5 85.9
STA 76.9 75.4 80.0 84.4 92.2 91.3 93.9 96.5 93.0 94.9 90.3 83.5 87.3 87.2 88.1 88.1

DeepJDOT 61.2 71.6 41.3 9.21 85.6 89.4 79.4 66.7 83.9 85.8 87.9 74.4 76.9 82.3 69.5 50.1
JPOT 79.2 75.3 80.8 86.7 92.4 91.2 94.4 98.4 92.9 92.1 93.9 96.9 88.2 85.4 89.7 94.0

Table 3: Classification accuracy (%) on Digits for open set domain adaptation (LeNet).

All the mentioned deep learning methods are trained with
Adam optimizer. And the model is trained on 256-sized
batches totally with N = 128 samples from each domain.
We use mini-batch SGD with momentum to 0.9 and the same
learning rate strategy in [Saito et al., 2018]. Following previ-
ous work [Herath et al., 2019], m is set as 0.4 in the whole
experiment. Note that the parameter η is set as 0.1. As for
tradeoff hyper-parameters α and β, we select α = 0.02 and
β = 0.05 for all transfer tasks.

4.3 Result and Discussion
The classification accuracy results on the Office-31 dataset for
open set domain adaptation based on ResNet-50 are shown
in Table 1. For fair comparison, all results of compared
approaches are directly reported from their original papers.
The JPOT exceeds the performance of all previous methods
on most transfer tasks. It is worth noting that our proposal
improves the classification accuracies substantially on hard
transfer tasks, e.g. A→W and W→A, and achieves compa-
rable classification performance on easy transfer tasks, e.g.
D→W and W→D. In particular, JPOT produces higher OS
than OS*, verifying that JPOT is robust to open set domain
adaptation scenarios. Besides, some close set domain adap-
tation methods perform worse than ResNet on a few tasks
since these methods suffer from negative transfer caused by
mismatching unknown classes in the target domain to known

classes in the source domain. JPOT aligns the discriminative
representations of shared class centers in both source and tar-
get domains by center-based optimal transport strategy, and
achieves intra-class compactness and inter-class separability.

Results on the twelve tasks of Office-Home dataset are
shown in Table 2. Due to the large domain gap between the
source and target domains, we observe that previous open set
domain adaptation approaches obtain poor performance on
some tasks. The JPOT approach outperforms the compari-
son methods on most transfer tasks. The encouraging results
suggest that our proposal alleviates the negative transfer is-
sue brought by the unknown class in the target domain, and
also highlight the importance of center-based optimal trans-
port strategy in open set domain adaptation.

We further compare JPOT with previous approaches on the
Digits dataset, as reported in Table 3. In contrast to Office-31
dataset, Digits dataset has a much larger domain size. JPOT
overpasses all comparison methods with different metrics on
most transfer tasks. Note that, SVHN dataset contains signif-
icant variations (in scale, slanting, blurring and rotation) and
confounding information from background that makes large
domain gap on task SVHN→MNIST. JPOT achieves better
performance than STA on task SVHN→MNIST. In partic-
ular, JPOT almost achieves the state-of-the-art performance
with the UNK accuracy in all transfer tasks, which suggests
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(a) OSBP (b) DeepJDOT (c) JPOT-P (d) JPOT

(e) OSBP (f) DeepJDOT (g) JPOT-P (h) JPOT

Figure 3: Visualization of features on MNIST→USPS task. Figure (a-d) represents category alignment (Each color denotes a class. The Red
denotes the Unknown class). Figure (e-h) represents domain alignment (Blue: Source domain; Red: Target domain). Best viewed in color.

Method MNIST→USPS

OS OS* ALL UNK

JPOT-P 92.0 91.1 89.2 90.4
JPOT-T 91.4 91.1 87.9 87.4
JPOT-S 92.4 91.7 92.5 93.1
JPOT 92.9 92.1 93.9 96.9

Table 4: Ablation study: classification accuracy (%) on Digits.

that JPOT is robust to large domain gap and able to learn more
transferable representations for open set domain adaptation.

4.4 Ablation Study
To tooth apart the separate contributions of center-based opti-
mal transport strategy and discriminative domain alignment,
we compare JPOT with OSBP [Saito et al., 2018], DeepJ-
DOT [Damodaran et al., 2018] and a variant of JPOT using
the t-SNE embeddings [Donahue et al., 2014] of the last-
layer features on transfer task MNIST→USPS in Figures
3(a)-3(h). (1) In Figures 3(a) and 3(e), we observe that in
the OSBP model, scattered samples of unknown and known
classes in the target domain are close or even mixed together
and the domains are not well aligned, which may cause neg-
ative transfer. Therefore the OSBP output classification is
of low confidence. (2) In Figures 3(b) and 3(f), although the
original DeepJDOT computes the global optimal transport so-
lution, the target unknown samples still be mistaken trans-
ported to the corresponding source domain. Apparently the
unknown samples mixes up with the known samples which
leads to terrible prediction results. (3) As shown in Figures
3(c) and 3(g), compared with OSBP and DeepJDOT, JPOT-
P (Lcls + αLp) with partial optimal transport strategy and
without joint discriminative prototypical compactness loss,
achieves better domain alignment with high classification per-
formance meanwhile avoid negative transfer. Due to the fact
that partial optimal transport exploits the most likely to be the
unknown samples, the unknown target samples will not fully
mix up with the known samples. (4) As shown in Figures 3(d)
and 3(h), JPOT achieves intra-class compactness and inter-
class separability, and also improves with a large room over
JPOT-P, validating the complement of discriminative feature

learning with the corporation of partial optimal transport.
In Table 4, further ablation tests have been carried out

on variations of JPOTs including JPOT-T (Lcls + αLknoo ),
JPOT-S (Lcls+αLp+βLdc), and JPOT-P. (1) While JPOT-
T still works well on detecting unknown instances (87.4%
of accuracy), the performance falls behind other JPOT varia-
tions. Without the additional loss Lunko , JPOT-T lacks driv-
ing force to push unknown samples away from the known
samples in the feature space, resulted in inferior performance.
(2) JPOT-S outperforms JPOT-P on all metrics: this indi-
cates that joint discriminative learning especially the com-
pactifying effect due to Ldc to make source samples more
close to their class means could help to reduce the misclassifi-
cation error caused by those source samples scattered near the
the decision boundary. (3) JPOT outperforms all variations.
This demonstrates that the prototypical compactness loss Ldp
to compactify target samples and to be more discriminative is
a good strategy to boost the efficacy significantly.

5 Conclusion
This paper presents Joint Partial Optimal Transport (JPOT)
for open set domain adaptation, addressing the critical chal-
lenge of negative transfer brought by unknown class samples
in the target domain. We propose partial optimal transport
based on global optimal transport with coupling matching
matrix to exploit the most likely unknown target samples.
Meanwhile, the joint discriminative feature learning helps to
not only match shared class samples in both domains, but also
separate samples of unknown and known classes in the target
domain. This well improves the domain adaptation perfor-
mance. Comprehensive experiments show that our method
outperforms state-of-the-art results on various domain adap-
tation datasets.
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