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Abstract— For a target task where the labeled data are
unavailable, domain adaptation can transfer a learner from a dif-
ferent source domain. Previous deep domain adaptation methods
mainly learn a global domain shift, i.e., align the global source
and target distributions without considering the relationships
between two subdomains within the same category of different
domains, leading to unsatisfying transfer learning performance
without capturing the fine-grained information. Recently, more
and more researchers pay attention to subdomain adaptation that
focuses on accurately aligning the distributions of the relevant
subdomains. However, most of them are adversarial methods that
contain several loss functions and converge slowly. Based on this,
we present a deep subdomain adaptation network (DSAN) that
learns a transfer network by aligning the relevant subdomain
distributions of domain-specific layer activations across different
domains based on a local maximum mean discrepancy (LMMD).
Our DSAN is very simple but effective, which does not need
adversarial training and converges fast. The adaptation can
be achieved easily with most feedforward network models by
extending them with LMMD loss, which can be trained efficiently
via backpropagation. Experiments demonstrate that DSAN can
achieve remarkable results on both object recognition tasks
and digit classification tasks. Our code will be available at
https://github.com/easezyc/deep-transfer-learning.

Index Terms— Domain adaptation, fine grained, subdomain.

I. INTRODUCTION

IN RECENT years, deep learning methods have achieved
impressive success in computer vision [1], which, however,

usually needs large amounts of labeled data to train a good
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Fig. 1. Left: global domain adaptation might lose some fine-grained
information. Right: relevant subdomain adaptation can exploit the local affinity
to capture the fine-grained information for each category.

deep network. In the real world, it is often expensive and
laborsome to collect enough labeled data. For a target task
with the shortage of labeled data, there is a strong motivation
to build effective learners that can leverage rich labeled data
from a related source domain. However, this learning paradigm
suffers from the shift of data distributions across different
domains, which will undermine the generalization ability of
machine learning models [2], [3].

Learning a discriminative model in the presence of the shift
between the training and test data distributions is known as
domain adaptation or transfer learning [2], [4], [5]. Previ-
ous shallow domain adaptation methods bridge the source
and target domains by learning invariant feature representa-
tions [6]–[8] or estimate instance importance without using
target labels [9]. Recent studies have shown that deep net-
works can learn more transferable features for domain adap-
tation [10], [11], by disentangling explanatory factors of
variations behind domains. The latest advantages have been
achieved by embedding domain adaptation modules in the
pipeline of deep feature learning to extract domain-invariant
representations [12]–[16].

The previous deep domain adaptation methods [13], [16],
[17] mainly learn a global domain shift, i.e., aligning the
global source and target distributions without considering
the relationships between two subdomains in both domains
(a subdomain contains the samples within the same class.).
As a result, not only all the data from the source and
target domains will be confused, but also the discriminative
structures can be mixed up. This might loss the fine-grained
information for each category. An intuitive example is shown
in Fig. 1 (left). After global domain adaptation, the distribu-
tions of the two domains are approximately the same, but the
data in different subdomains are too close to be classified accu-
rately. This is a common problem in previous global domain
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adaptation methods. Hence, matching the global source and
target domains may not work well for diverse scenarios.

With regard to the challenge of global domain shift, recently,
more and more researchers [14], [15], [18]–[21] pay attention
to subdomain adaptation (also called semantic alignment or
matching conditional distribution) which is centered on learn-
ing a local domain shift, i.e., accurately aligning the distrib-
ution of the relevant subdomains within the same category in
the source and target domains. An intuitive example is shown
in Fig. 1 (right). After subdomain adaptation, with the local
distribution that is approximately the same, the global distri-
bution is also approximately the same. However, all of them
are adversarial methods that contain several loss functions and
converge slowly. We list the comparison of the subdomain
adaptation methods in Experiment IV.

Based on the subdomain adaptation, we propose a deep sub-
domain adaptation network (DSAN) to align the relevant sub-
domain distributions of activations in multiple domain-specific
layers across domains for unsupervised domain adaptation.
DSAN extends the feature representation ability of deep
adaptation networks (DANs) by aligning relevant subdomain
distributions as mentioned earlier. A key improvement over
previous domain adaptation methods is the capability of
subdomain adaptation to capture the fine-grained information
for each category, which can be trained in an end-to-end
framework. To enable proper alignment, we design a local
maximum mean discrepancy (LMMD), which measures the
Hilbert–Schmidt norm between kernel mean embedding of
empirical distributions of the relevant subdomains in source
and target domains with considering the weight of different
samples. The LMMD method can be achieved with most
feedforward network models and can be trained efficiently
using standard backpropagation. In addition, our DSAN is very
simple and easy to implement. Note that the most remarkable
results are achieved by adversarial methods recently. Experi-
ments show that DSAN, which is a nonadversarial method, can
obtain the remarkable results for standard domain adaptation
on both object recognition tasks and digit classification tasks.

The contributions of this article are summarized as follows.
1) We propose a novel deep neural network architecture

for subdomain adaptation, which can extend the ability
of DANs by capturing the fine-grained information for
each category.

2) We show that DSAN, which is a nonadversarial method,
can achieve the remarkable results. In addition, our
DSAN is very simple and easy to implement.

3) We propose LMMD to measure the discrepancy between
kernel mean embedding relevant subdomains in source
and target domains and successfully apply it to DSAN.

4) A new local distribution discrepancy measure dAL is
proposed to estimate the discrepancy between two
subdomain distributions.

II. RELATED WORK

In this section, we will introduce the related work in
three aspects: domain adaptation, maximum mean discrep-
ancy (MMD), and subdomain adaptation methods.

1) Domain Adaptation: Recent years have witnessed many
approaches to solve the visual domain adaptation problem,
which is also commonly framed as the visual data set bias
problem [2], [3]. Previous shallow methods for domain adapta-
tion include reweighting the training data so that they can more
closely reflect those in the test distribution [22], and finding
a transformation in a lower dimensional manifold that draws
the source and target subspaces closer [6]–[8], [23], [24].

Recent studies have shown that deep networks can learn
more transferable features for domain adaptation [10], [11],
by disentangling explanatory factors of variations behind
domains. The latest advances have been achieved by
embedding domain adaptation modules in the pipeline of
deep feature learning to extract domain-invariant representa-
tions [12]–[16], [25]. Two main approaches are identi-
fied among the literature. The first is statistic moment
matching-based approach, i.e., MMD [13], [26], [27], central
moment discrepancy (CMD) [28], and second-order statistics
matching [16]. The second commonly used approach is based
on an adversarial loss, which encourages samples from differ-
ent domains to be nondiscriminative with respect to domain
labels, i.e., domain adversarial net-based adaptation meth-
ods [17], [29], [30] borrowing the idea of GAN. Generally,
the adversarial approaches can achieve better performance than
the statistic moment matching-based approaches. In addition,
most state-of-the-art approaches [14], [29], [31] are domain
adversarial net-based adaptation methods. Our DSAN is an
MMD-based method. We show that DSAN without adversarial
loss can achieve remarkable results.

2) Maximum Mean Discrepancy: MMD has been adopted
in many approaches [8], [13], [27] for domain adaptation.
In addition, there are some extensions of MMD [7], [26].
Conditional MMD [7] and joint MMD [26] measure the
Hilbert–Schmidt norm between kernel mean embedding of
empirical conditional and joint distributions of the source
and target data, respectively. Weighted MMD [32] alleviates
the class weight bias by assigning class-specific weights to
source data. However, our local MMD measures the discrep-
ancy between kernel mean embedding relevant subdomains
in source and target domains with considering the weight of
different samples. CMMD [7], [23], [33] is a special case of
our LMMD.

3) Subdomain Adaptation: Recently, we have witnessed
considerable interest and research [14], [15], [18], [20] for sub-
domain adaptation that focuses on accurately aligning the dis-
tributions of the relevant subdomains. Multiadversarial domain
adaptation (MADA) [15] captures the multimode structures to
enable fine-grained alignment of different data distributions
based on multiple-domain discriminators. Moving semantic
transfer network (MSTN) [20] learns the semantic repre-
sentations for unlabeled target samples by aligning labeled
source centroid and pseudolabeled target centroid. CDAN [14]
conditions the adversarial adaptation models on discriminative
information conveyed in the classifier predictions. Co-DA [18]
constructs multiple diverse feature spaces and aligns source
and target distributions in each of them individually while
encouraging that alignments agree with each other with regard
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to the class predictions on the unlabeled target examples. The
adversarial loss is adopted by all of them. However, compared
DSAN with them, our DSAN that is more simple and easy to
implement can achieve better performance without adversarial
loss.

III. DEEP SUBDOMAIN ADAPTATION NETWORK

In unsupervised domain adaptation, we are given a source
domain Ds = {(xs

i , ys
i )}ns

i=1 of ns labeled samples ( ys
i ∈ R

C

is an one-hot vector indicating the label of xs
i , i.e., ys

i j =
1 means xs

i belonging to the j th class, where C is the
number of classes.) and a target domain Dt = {xt

j}nt
j=1 of nt

unlabeled samples. Ds and Dt are sampled from different data
distributions p and q , respectively, and p �= q . The goal of
deep domain adaptation is to design a deep neural network
y = f (x) that formally reduces the shifts in the distributions
of the relevant subdomains in different domains and learns
transferable representations simultaneously such that the target
risk Rt ( f ) = E(x,y) q[ f (x) �= y] can be bounded by leveraging
the source domain supervised data.

Recent studies reveal that deep networks [34] can learn more
transferable representations than traditional handcrafted fea-
tures [11], [35]. The favorable transferability of deep features
leads to several popular deep transfer learning methods [12],
[13], [26], [36], which mainly use adaptation layers with a
global domain adaptation loss to jointly learn a representation.
The formal representation can be

min
f

1

ns

ns∑
i=1

J
(

f
(
xs

i

)
, ys

i

) + λd̂(p, q) (1)

where J (·, ·) is the cross-entropy loss function (classification
loss) and d̂(·, ·) is domain adaptation loss. λ > 0 is the tradeoff
parameter of the domain adaptation loss and the classification
loss.

The common problem with these methods is that they
mainly focus on aligning the global source and target dis-
tributions without considering the relationships between sub-
domains within the same category of different domains. These
methods derive a global domain shift for the source and target
domains, and the global distribution of the two domains is
approximately the same after adaptation. However, the global
alignment may lead to some irrelevant data too close to
be classified accurately. Actually, while by exploiting the
relationships between the subdomains in different domains,
just aligning the relevant subdomain distributions can not
only match the global distributions but also the local distri-
butions mentioned earlier. Therefore, subdomain adaptation
that exploits the relationships between two subdomains to
overcome the limitation of aligning global distributions is
necessary.

To divide the source and target domains into multiple
subdomains that contain the samples within the same class,
the relationships between the samples should be exploited.
It is well known that the samples within the same category
are more relevant. However, data in the target domain is
unlabeled. Hence, we would use the output of the networks
as the pseudolabels of target domain data, which will be

detailed later. According to the category, we divide Ds and
Dt into C subdomains D(c)

s and D(c)
t where c ∈ {1, 2, . . . , C}

denotes the class label, and the distributions of D(c)
s and D(c)

t

are p(c) and q(c), respectively. The aim of subdomain adapta-
tion is to align the distributions of relevant subdomains that
have samples with the same label. Combining the classification
loss and subdomain adaptation loss, the loss of subdomain
adaptation method is formulated as

min
f

1

ns

ns∑
i=1

J ( f (xs
i ), ys

i ) + λEc[d̂(p(c), q(c))] (2)

where Ec[·] is the mathematical expectation of the class.
To compute the discrepancy in 2 between the relevant subdo-
main distributions based on MMD [37] that is a nonparametric
measure, we propose LMMD to estimate the distribution
discrepancy between subdomains.

A. Maximum Mean Discrepancy

MMD [37] is a kernel two-sample test, which rejects or
accepts the null hypothesis p = q based on the observed
samples. The basic idea behind MMD is that if the generating
distributions are identical, all the statistics are the same.
Formally, MMD defines the following difference measure:

dH(p, q) � ‖Ep[φ(xs)] − Eq [φ(xt)]‖2
H (3)

where H is the reproducing kernel Hillbert space (RKHS)
endowed with a characteristic kernel k. Here, φ(·) denotes
some feature map to map the original samples to RKHS and
the kernel k means k(xs, xt) = 〈φ(xs), φ(xt )〉, where 〈·, ·〉
represents inner product of vectors. The main theoretical result
is that p = q if and only if DH(p, q) = 0 [37]. In practice,
an estimate of the MMD compares the square distance between
the empirical kernel mean embeddings as

d̂H(p, q) =
∥∥∥∥∥∥

1

ns

∑
xi ∈Ds

φ(xi ) − 1

nt

∑
x j ∈Dt

φ(x j)

∥∥∥∥∥∥

2

H

= 1

n2
s

ns∑
i=1

ns∑
j=1

k
(
xs

i , xs
j

) + 1

n2
t

nt∑
i=1

nt∑
j=1

k
(
xt

i , xt
j

)

− 2

nsnt

ns∑
i=1

nt∑
j=1

k
(
xs

i , xt
j

)
(4)

where d̂H(p, q) is an unbiased estimator of dH(p, q).

B. Local Maximum Mean Discrepancy

As a nonparametric distance estimate between two dis-
tributions, MMD has been widely applied to measure the
discrepancy between the source and target distributions. Pre-
vious deep MMD-based methods [13], [26], [38] mainly
focus on the alignment of the global distributions, ignoring
the relationships between two subdomains within the same
category. Taking the relationships of the relevant subdomains
into consideration, it is important to align the distributions of
the relevant subdomains within the same category in source
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Fig. 2. Left: architecture of DSAN. DSAN will formally reduce the discrepancy between the relevant subdomain distributions of the activations in layers L
by using LMMD minimization. Right: LMMD module needs four inputs: the activations zsl and ztl where l ∈ L , the ground-truth label ys , and the predicted
label ŷt .

and target domains. With the desire to align distributions of
the relevant subdomains, we propose the LMMD as

dH(p, q) � Ec‖Ep(c) [φ(xs)] − Eq(c) [φ(xt)]‖2
H (5)

where xs and xt are the instances in Ds and Dt , and p(c)

and q(c) are the distributions of D(c)
s and D(c)

t , respectively.
Different from MMD that focuses on the discrepancy of global
distributions, 5 can measure the discrepancy of local distrib-
utions. By minimizing 5 in deep networks, the distributions
of relevant subdomains within the same category are drawn
close. Therefore, the fine-grained information is exploited for
domain adaptation.

We assume that each sample belongs to each class according
to weight wc. Then, we formulate an unbiased estimator of 5
as

d̂H(p, q) = 1

C

C∑
c=1

∥∥∥∥∥∥
∑

xs
i ∈Ds

wsc
i φ(xs

i ) −
∑

xt
j ∈Dt

wtc
j φ(xt

j )

∥∥∥∥∥∥

2

H

(6)

where wsc
i and wtc

j denote the weight of xs
i and xt

j belonging
to class c, respectively. Note that

∑ns
i=1 wsc

i and
∑nt

j=1 wtc
j are

both equal to one, and
∑

xi ∈D wc
i φ(xi) is a weighted sum on

category c. We compute wc
i for the sample xi as

wc
i = yic∑

(x j ,y j )∈D y jc
(7)

where yic is the cth entry of vector yi . For samples in the
source domain, we use the true label ys

i as a one-hot vector
to compute wsc

i for each sample. However, in unsupervised
adaptation where the target domain has no labeled data, we can
not calculate 6 directly with the yt

j unavailable. We find
that the output of the deep neural network ŷi = f (xi) is a
probability distribution that well characterizes the probability
of assigning xi to each of the C classes. Thus, for target
domain Dt without labels, it is a natural idea to use ŷt

i as
the probability of assigning xt

i to each of the C classes. Then,
we can calculate wtc

j for each target sample. Finally, we can
calculate 6.

It is easy to access the labels of the source domain, while
for the target domain, the label predicted (hard prediction)
by the model might be wrong, and using this wrong label
might degrade the performance. Hence, using the probability
prediction (soft prediction) might alleviate the negative impact.
Note that CMMD, which assumes that each sample has the

same weight, is a special case of LMMD, whereas LMMD
takes the uncertainty of target samples into consideration.

To adapt feature layers, we need the activations in the
layers. Given source domain Ds with ns labeled instances and
target domain Dt with nt unlabeled points drawn independent
identically distributed (i.i.d.) from p and q , respectively,
the deep networks will generate activations in layers l as
{zsl

i }ns
i=1 and {ztl

j }nt
j=1. In addition, we cannot compute the φ(·)

directly. Then, we reformulate 6 as

d̂l(p, q) = 1

C

C∑
c=1

⎡
⎣

ns∑
i=1

ns∑
j=1

wsc
i wsc

j k
(
zsl

i , zsl
j

)

+
nt∑

i=1

nt∑
j=1

wtc
i wtc

j k
(
ztl

i , ztl
j

)

−2
ns∑

i=1

nt∑
j=1

wsc
i wtc

j k
(
zsl

i , ztl
j

)
⎤
⎦ (8)

where zl is the lth (l ∈ L = {1, 2, . . . , |L|}) layer activation.
Equation 8 can be used as the adaptation loss in 2 directly, and
the LMMD can be achieved with most feedforward network
models.

C. Deep Subdomain Adaptation Network

Based on LMMD, we propose DSAN as shown in Fig. 2.
Different from previous global adaptation methods, DSAN
not only aligns the global source and target distributions but
also aligns the distributions of the relevant subdomains by
integrating deep feature learning and feature adaptation in
an end-to-end deep learning model. We try to reduce the
discrepancy between the relevant subdomain distributions of
the activations in layers L. We use the LMMD in (8) over the
domain-specific layers L as the subdomain adaptation loss in
the following equation:

min
f

1

ns

ns∑
i=1

J
(

f
(
xs

i

)
, ys

i

) + λ
∑
l∈L

d̂l(p, q). (9)

Since training deep CNNs requires a large amount of labeled
data that are prohibitive for many domain adaptation appli-
cations, we start with the CNN models pretrained on the
ImageNet 2012 data and fine-tune it as [26]. The training of
DSAN mainly follows standard minibatch stochastic gradient
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descent (SGD) algorithm. It is worth noting that, with DSAN
iteration, the labeling for target samples usually becomes more
accurate. This EM-like pseudolabel refinement procedure is
empirically effective, as shown in the experiments.

Remark: The theory of domain adaptation [39], [40] sug-
gests A-distance as a measure of distribution discrepancy,
which, together with the source risk, will bound the target risk.
The proxy A-distance is defined as dA = 2(1 − 2ε), where
ε is the generalization error of a classifier (e.g., kernel SVM)
trained on the binary problem of discriminating the source and
target. The A-distance just focuses on the global distribution
discrepancy; hence, we propose the AL -distance to estimate
the subdomain distribution discrepancy. First, we define dA of
class c as dAc = 2(1 − 2εc), where εc is the generalization
error of a classifier trained on the same class in different
domains. Then, we define dAL = E[dAc ] = 2E[1 − 2εc] =
2

∑C
c=1 p(c)(1 − 2εc), where E[·] denotes the mathematical

expectation and p(c) denotes the probability of class c in the
target domain.

D. Theoretical Analysis

In this section, we give an analysis of the effectiveness of
using the classifier predictions on the target samples, making
use of the theory of domain adaptation [39], [41].

Theorem 1: Let H be the hypothesis space. Given two
domains S and T , we have

∀h ∈ H, RT (h) ≤ RS(h) + 1

2
dH�H(S,T ) + C (10)

where RS(h) and RT (h) are the expected error on the
source samples and target samples, respectively. RS(h) can
be minimized easily with source label information. Besides,
dH�H(S,T ) is the domain divergence measure by a discrep-
ancy distance between two distributions S and T . Actually,
there are many approaches to minimize dH�H(S,T ), such
as adversarial learning [12], MMD [13], and Coral [16]. C
is the shared expected loss and is expected to be negligibly
small, thus usually disregarded by previous methods [12], [13].
However, it is possible that C tends to be large when the
cross-domain category alignment is not explicitly enforced.
Hence, C needs to be bounded as well. Unfortunately, we can-
not directly measure C without target true labels. Therefore,
we utilize the pseudolabels to give the approximate evaluation
and minimization.

Definition 1: C is defined as

C = min
h∈H

RS(h, fS) + RT (h, fT ) (11)

where fS and fT are true labeling functions for source and
target domain, respectively.

We show our DSAN is trying to optimize the upper bound
for C . From [39], for any labeling functions f1, f2, and f3,
we have

R( f1, f2) ≤ R( f1, f3) + R( f2, f3). (12)

Then, we have

C = min
h∈H

RS(h, fS) + RT (h, fT )

≤ min
h∈H

RS(h, fS) + RT (h, fS) + RT ( fS , fT )

≤ min
h∈H

RS(h, fS) + RT (h, fS) + RT ( fS , fT̂ )

+RT ( fT , fT̂ ) (13)

where fT̂ is pseudolabeling function for target domain. The
first term RS(h, fS) and the second term RT (h, fS) denotes
the disagreement between h and the source labeling function
fS on source and target samples, respectively. Since h is
learned with the labeled source samples, the gap between them
can be very small. The last term RT ( fT , fT̂ ) denotes the
discrepancy between the ideal target labeling function fT and
the pseudolabeling function fT̂ , which would be minimized
as learning proceeds. Then, we should focus on the third term
RT ( fS , fT̂ ) = Ex∼T [l( fS(x), fT̂ (x))], where l(·, ·) is typi-
cally 0–1 loss function. The source samples of class k would
be predicted with label k by the source labeling function fS .
If the feature of target samples in class k is similar with the
source feature in class k, the target samples can be predicted
the same as the pseudotarget labeling function. Therefore,
if the distributions of subdomains in different domain are
matching, RT ( fS, fT̂ ) is expected to be small.

In summary, by aligning relevant subdomain distributions,
our DSAN could further minimize the shared expected loss C .
Hence, utilizing the prediction of the target samples is effective
for unsupervised domain adaptation.

IV. EXPERIMENT

We evaluate DSAN against competitive transfer learning
baselines on object recognition and digit classification. The
four data sets, including ImageCLEF-DA, Office-31, Office-
Home, and VisDA-2017, are used for object recognition task,
while for digit classification, we construct the transfer tasks
from MNIST, USPS, and SVHN. We denote all transfer tasks
as source domain → target domain.

A. Setup

ImageCLEF-DA1 is a benchmark data set for ImageCLEF
2014 domain adaptation challenge, which is organized by
selecting 12 common categories shared by the following
three public data sets, each is considered as a domain:
Caltech-256 (C), ImageNet ILSVRC 2012 (I), and Pascal
VOC 2012 (P). There are 50 images in each category and
600 images in each domain. We use all domain combinations
and build six transfer tasks: I → P, P → I, I → C, C → I,
C → P, P → C.

Office-31 [43] is a benchmark data set for domain adap-
tation, comprising 4110 images in 31 classes collected
from three distinct domains: Amazon (A), which contains
images downloaded from amazon.com, and Webcam (W) and
DSLR (D), which contain images taken by Web camera and
digital SLR camera with different photographical settings,

1http://imageclef.org/2014/adaptation
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respectively. To enable unbiased evaluation, we evaluate all
methods on all six transfer tasks A → W, D → W, W → D,
A → D, D → A, W → A as in [12], [26], and [38].

Office-Home [44] is a new data set, which consists
of 15 588 images and is much larger than Office-31 and
ImageCLEF-DA. It consists of images from four different
domains: artistic images (A), clip art (C), product images (P),
and real-world images (R). For each domain, the data set
contains the images of 65 object categories collected in office
and home settings. Similarly, we use all domain combinations
and construct 12 transfer tasks.

VisDA-2017 [45] is a challenging simulation-to-real data
set, with two very distinct domains: synthetic, renderings
of 3-D models from different angles and with different light-
ning conditions, and real, natural images. It contains over 280k
images across 12 classes in the training, validation, and test
domains.

MNIST-USPS-SVHN: We explore three digit data sets:
MNIST [46], USPS, and SVHN [47] for transfer digit classi-
fication. Different from Office-31, MNIST contains gray digit
images of size 28×28, USPS contains 16×16 gray digits, and
SVHN contains color 32×32 digits images that might contain
more than one digit in each image. We conduct experiments
on three transfer tasks MNIST → USPS, USPS → MNIST,
and SVHN → MNIST.

Baseline Methods: For ImageCLEF-DA and Office-31,
we compare our model DSAN with several standard deep
learning methods and deep transfer learning methods:
deep convolutional neural network (ResNet) [1], deep
domain confusion (DDC) [38], DAN [13], Deep CORAL
(D-CORAL) [16], domain adversarial neural networks
(DANNs) [17], residual transfer network (RTN) [26], adversar-
ial discriminative domain adaptation (ADDA) [30], joint adap-
tation networks (JANs) [26], MADA [15], collaborative and
adversarial network (CAN and iCAN) [31], generate to adapt
(GTA) [42], and conditional adversarial domain adaptation
(CDAN and CDAN+E) [14]. For Office-Home, we compare
DSAN with ResNet, DAN, DANN, JAN, and CDAN, and
the results of all baselines are extracted from [14] and [15].
For VisDA-2017, we compare DSAN with ResNet, DANN,
DAN, JAN, and MCD [48], and the results of all baselines
are extracted from [49].

For MNIST-USPS-SVHN, we compare DSAN with
DANNs [17], deep reconstruction classification networks
(DRCNs) [50], coupled generative adversarial networks
(CoGANs) [51], ADDA [30], unsupervised image-to-image
translation networks (UNIT) [], asymmetric tritraining domain
adaptation (ATDA) [53], GTA [42], and MSTN [20]. The
results of SourceOnly, DANN, DRCN, CoGAN, ADDA, and
GTA are extracted from [42]. For the rest, we refer to the
results in their original articles.

Implementation Details For object recognition tasks,
we employed the ResNet [1]. Following CDAN [14], a bottle-
neck layer f cb with 256 units is added after the last average
pooling layer for safe transfer representation learning. We use
the output of f cb as inputs to the LMMD. Note that, it is easy
to add LMMD in multiple layers and we only add LMMD
to one layer. Also, image random flipping and cropping are

adopted following JAN [26]. For a fair comparison, all base-
lines use the same architecture (for VisDA-2017, we use
ResNet101 [1], whereas ResNet50 for others). We fine-tune
all convolutional and pooling layers from ImageNet pretrained
models and train the classifier layer via back-propagation.
Since the classifier is trained from scratch, we set its learning
rate to be ten times that of the other layers. For digit classifi-
cation tasks, we follow the protocols in ADDA [30] and use
the same architecture with ADDA.

For all tasks, we use minibatch SGD with a momentum
of 0.9 and the learning rate annealing strategy in Revgrad [12];
the learning rate is not selected by a grid search due to
high computational cost, it is adjusted during SGD using the
following formula: ηθ = η0/(1 + αθ)β , where θ is the training
progress linearly changing from 0 to 1, η0 = 0.01, α = 10,
and β = 0.75. To suppress noisy activations at the early
stages of training, instead of fixing the adaptation factor λ,
we gradually change it from 0 to 1 by a progressive schedule:
λθ = 2/exp(−γ θ) − 1, and γ = 10 is fixed throughout the
experiments [12].

We implement DSAN in PyTorch and report the aver-
age classification accuracy and standard error of three ran-
dom trials. For all MMD-based methods [13], [26], [38]
including DSAN, we adopt Gaussian kernel with bandwidth
set to median pairwise squared distances on the training
data [37].

B. Results

1) Object Recognition: The classification results of
ImageCLEF-DA, Office-31, Office-Home, and VisDA-2017
are, respectively, shown in Tables I–IV. DSAN outperforms
all compared methods on most transfer tasks. In particular,
DSAN substantially improves the average accuracy by large
margins (more than 3%) on Image-CLEF, Office-Home, and
VisDA-2017. The encouraging results indicate the importance
of subdomain adaptation and show that DSAN is able to learn
more transferable representations.

The experimental results further reveal several insightful
observations.

1) In standard domain adaptation, subdomain adaptation
methods (MADA [15], CDAN [14], and our DSAN)
outperform previous global domain adaptation meth-
ods. The improvement from previous global domain
adaptation methods to subdomain adaptation methods is
crucial for domain adaptation; previous methods align
global distribution without considering the relationship
between subdomains, whereas DSAN accurately aligns
the relevant subdomain distributions, which can capture
more fine-grained information for each category.

2) In particular, comparing DSAN with the most
recent subdomain adaptation methods [14], [15],
DSAN achieves better performance. This verifies the
effectiveness of our model.

3) Comparing DSAN with the nonadversarial meth-
ods [13], [16], [26], [38], DSAN also largely improves
the average performance on 24 object recognition tasks
(6.65% higher than JAN [26]).
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TABLE I

ACCURACY (%) ON IMAGECLEF-DA FOR UNSUPERVISED DOMAIN ADAPTATION (RESNET50)

TABLE II

ACCURACY (%) ON OFFICE-31 FOR UNSUPERVISED DOMAIN ADAPTATION (RESNET50)

TABLE III

ACCURACY (%) ON OFFICE-HOME FOR UNSUPERVISED DOMAIN ADAPTATION (RESNET50)

TABLE IV

ACCURACY (%) ON VISDA-2017 FOR UNSUPERVISED DOMAIN ADAPTATION (RESNET101)

4) Comparing DSAN with LMMD, DAN with MMD, and
JAN with JMMD, DSAN achieves the best performance,
which implies that LMMD is more suitable for aligning
distributions than MMD and JMMD.

2) Digit Classification: The classification results of three
tasks of MNIST–USPS–SVHN are shown in Table V. Except
for DRCN [50], all other baselines are adversarial ones.

DSAN largely outperforms all baselines except SVHN →
MNIST task. Comparing DSAN with MSTN [20] which is
also a subdomain adaptation method, DSAN achieves better
average accuracy and more stable results with lower standard
error.

Overall, all the abovementioned results demonstrate the
effectiveness of the proposed model.
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Fig. 3. (a) and (b) Visualizations of the learned representations using t-SNE for JAN and DSAN on task A→W, respectively. Red points are source samples
and blue are target samples. (c) A-distance and AL -distance on task A→W. (d) MMD and (e) LMMD on task A→W.

TABLE V

ACCURACY (%) ON DIGIT RECOGNITION TASKS FOR UNSUPERVISED
DOMAIN ADAPTATION. (“−” MEANS THAT WE DID NOT

FIND THE RESULT ON THE TASK)

C. Analysis

1) Feature Visualization: We visualize in Fig. 3(a) and (b)
the network activations of task A → W learned by JAN
and DSAN (both use Gaussian kernel) using t-SNE embed-
dings [10]. Red points are source samples and blue are target
samples. Fig. 3(a) shows the result for JAN [26], which is
a typical statistic moment matching-based approach using
JMMD. We can find that the source and target domains are
not aligned very well and some points are hard to classify.
In contrast, Fig. 3(b) shows the representations learned by
our DSAN using LMMD. It is observed that the source and
target domains are aligned very well. We not only can see that
the subdomains in different domains with the same class are
very close but also the subdomains with different classes are
dispersed. This result suggests that our model DSAN is able to
capture more fine-grained information for each category than
JAN, and LMMD is more effective than JMMD to align the
distributions.

2) Distribution Discrepancy: We use A-distance and
AL -distance mentioned in Section III-C to measure global
distribution discrepancy and the subdomain distribution dis-
crepancy. Fig. 3(c) shows dA and dAL on task A → W with
representations of CNN, JAN, and DSAN. We observe that dA
and dAL using DSAN are much smaller than the ones using
CNN and JAN, which shows that DSAN can not only close the
cross-domain gap but also one of relevant subdomains more
effectively.

MMD is a method to measure the discrepancy of global
distributions, whereas LMMD is a method to measure the

Fig. 4. On task D → A (Office31), we further analyze the convergence.
(a) Convergence (iteration). (b) Convergence (time).

discrepancy of local subdomain distributions. We compute
MMD and LMMD across domains on task A → W using
CNN, JAN, and DSAN based on the features in pool layer
and ground-truth labels. Fig. 3(d) shows that both MMD and
LMMD using DSAN activations are much smaller than using
CNN and JAN activations, which again validates that DSAN
successfully reduces the discrepancy of global and local dis-
tributions. In addition, LMMD is smaller than MMD for the
reason that LMMD can estimate the distribution discrepancy
by eliminating the irrelevant data.

3) Convergence: We testify the convergence of CDAN,
CDAN+E, and DSAN, with the test errors on task D → A
(Office31) shown in Fig. 4. From Fig. 4(a), with the same
number of iterations, DSAN achieves faster convergence than
CDAN and CDAN+E. From Fig. 4(b), with the same period,
DSAN also converges faster. Besides, the results further reveal
that for each iteration, DSAN runs faster than CDAN and
CDAN+E.

4) Discussion on the Advantage of DSAN: To give an
overview of the results, we further compare our DSAN with
several adversarial subdomain adaptation methods [14], [15],
[18], [20] in Table VI and find some insightful observations.
First, the adversarial subdomain adaptation methods usually
have several loss functions, while DSAN only needs one clas-
sification loss and one LMMD loss. In addition, DSAN only
has one hyperparameter, whereas MSTN [20] and Co-DA [18]
have several hyperparameters. DSAN has fewer loss terms and
hyperparameter, which also indicates the easy implementation.
Second, comparing DSAN with MADA [15] and CDAN [14],
DSAN also takes less time to converge. Third, DSAN achieves
the best performance. Especially, DSAN achieves 3% accuracy
higher than CDAN [14] which is one of the most recent
subdomain adaptation methods. Overall, all the results again
validate the advantage of our model DSAN.
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TABLE VI

COMPARISON OF THE SUBDOMAIN ADAPTATION METHODS. K IN MADA
MEANS THE NUMBER OF CLASSES. PARAMETER MEANS THE NUMBER

OF HYPERPARAMETERS IN THE METHODS. TIME MEANS THE

AVERAGE CONVERGENCE TIME ON THE IMAGECLEF-DA
DATA SET (SECONDS). TIME IS MEASURED ON A GEFORCE

GTX 1080 TI GPU BY OURSELVES. ACCURACY MEANS

THE AVERAGE ACCURACY ON THE IMAGECLEF-DA
DATA SET. “−” MEANS THAT WE DOSE NOT

FIND THE RESULTS FROM THE

ORIGINAL ARTICLE

V. CONCLUSION

Unlike the previous methods that align the global source
and target distributions, subdomain adaptation can accurately
align the distributions of relevant subdomains within the
same category of the source and target domains. However,
most recent subdomain adaptation methods are adversarial
approaches that contain several loss functions and converge
slowly. Based on this, we proposed a new method DSAN,
which is a nonadversarial method and very simple and easy to
implement. Furthermore, to measure the discrepancy between
relevant subdomains within the same category of different
domains, we proposed a new local distribution discrepancy
measure LMMD. Extensive experiments conducted on both
object recognition and digit classification tasks demonstrate
the effectiveness of the proposed model.
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