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Personalized Federated Learning with Adaptive
Batchnorm for Healthcare
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Dimitrios Dimitriadis, Senior Member, IEEE, and Tao Qin, Senior Member, IEEE

Abstract—There is a growing interest in applying machine learning techniques to healthcare. Recently, federated learning (FL) is
gaining popularity since it allows researchers to train powerful models without compromising data privacy and security. However, the
performance of existing FL approaches often deteriorates when encountering non-iid situations where there exist distribution gaps
among clients, and few previous efforts focus on personalization in healthcare. In this article, we propose FedAP to tackle domain shifts
and then obtain personalized models for local clients. FedAP learns the similarity between clients based on the statistics of the batch
normalization layers while preserving the specificity of each client with different local batch normalization. Comprehensive experiments
on five healthcare benchmarks demonstrate that FedAP achieves better accuracy compared to state-of-the-art methods (e.g., 10%+
accuracy improvement for PAMAP2) with faster convergence speed.

Index Terms—Distributed Computing, Federated Learning, Personalization, Batch Normalization, Healthcare.
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1 INTRODUCTION

MACHINE learning has been widely adopted in many
applications in people’s daily life [1], [2], [3]. Specif-

ically for healthcare, researchers can build models to pre-
dict health status by leveraging health-related data, such
as activity sensors [4], images [5], and other health in-
formation [6], [7], [8]. To achieve satisfying performance,
machine learning healthcare applications often require suf-
ficient client data for model training. However, with the
increasing awareness of privacy and security, more govern-
ments and organizations enforce the protection of personal
data via different regulations [9], [10]. In this situation, fed-
erated learning (FL) [11] emerges to build powerful machine
learning models with data privacy well-protected.

Personalization is important in healthcare applications
since different individuals, hospitals or countries usually
have different demographics, lifestyles, and other health-
related characteristics [12], i.e., the non-iid issue (not iden-
tically and independently distributed). Therefore, we are
more interested in achieving better personalized healthcare,
i.e., building FL models for each client to preserve their
specific information while harnessing their commonalities.
As shown in Fig. 1, there are three different clients A,B,
and C with different statistics of data distributions (e.g., the
adult A and the child B may have different lifestyles and
activity patterns). Even if federated learning can perform
in the standard way, the non-iid issue cannot be easily
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Fig. 1. Data non-iid in federated learning: different clients have different
data distributions.

handled. This will severely limit the performance of existing
federated learning algorithms.

The popular FL algorithm, FedAvg [13], has demon-
strated superior performance in many situations [14], [15].
However, FedAvg is unable to deal with non-iid data among
different clients since it directly averages the parameters of
models coming from all participating clients [16]. There are
some algorithms for this non-iid situation. FedProx [17] is
designed for non-iid data. However, FedProx only learns a
global model for all clients, which means that it is unable
to obtain personalized models for clients. FedHealth [18],
another work for personalized healthcare, needs access to
a large public dataset, which is often impossible in real ap-
plications. FedBN [19] handles the non-iid issue by learning
local batch normalization layers for each client but ignores
the similarities across clients that can be used to boost the
personalization.

In this article, we propose FedAP, a personalized feder-
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ated learning algorithm via adaptive batch normalization for
healthcare. Specifically, FedAP learns the similarities among
clients with the help of a pre-trained model that is easy
to obtain. The similarities are determined by the distances
of the data distributions, which can be calculated via the
statistical values of the layers’ outputs of the pre-trained
network. After obtaining the similarities, the server averages
the models’ parameters in a personalized manner and gen-
erates a unique model for each client. Each client preserves
its own batch normalization and updates the model with a
momentum method. In this way, FedAP can cope with the
non-iid issue in federated learning. FedAP is extensible and
can be deployed to many healthcare applications.

Our contributions are as follows:
1) We propose FedAP, a personalized federated learning

algorithm via adaptive batch normalization for health-
care, which can aggregate the information from differ-
ent clients without compromising privacy and security,
and learn personalized models for each client.

2) We evaluate the performance of FedAP in five pub-
lic healthcare datasets across time series and image
modalities. Experiments demonstrate that our FedAP
achieves significantly better performance than state-of-
the-art methods in all datasets.

3) FedAP reduces the number of rounds and speeds up
the convergence to some extent. Moreover, some exper-
imental results illustrate FedAP may be able to reduce
communication costs with little performance degrada-
tion via increasing local iterations and decreasing global
communications.

2 RELATED WORK

2.1 Machine Learning and Healthcare
With the rapid development of perception and computing
technology, people can make use of machine learning to
help doctors diagnose [20] and assist doctors in the op-
eration [21], etc. Many methods are proposed to monitor
people’s health state [22] and diagnose diseases that may
even have better performance than doctors’, especially in
the field of medical images [23]. Moreover, machine learning
can make disease warnings via daily behavior supervision
with simple wearable sensors [24]. For instance, certain
activities in daily life reflect early signals of some cognitive
diseases. Through daily observation of gait changes and
finger flexibility, the machine can tell people whether they
are suffering from Parkinson [25]. In addition, some studies
worked for better personalization in healthcare [26], [27].

Unfortunately, a successful healthcare application needs
a large amount of labeled data of persons. However, in
real applications, data are often separate and few people
or organizations are willing to disclose their private data. In
addition, an increasing number of regulations, such as [9],
[10], hold back the leakages of data. These make different
clients cannot exchange data directly, and the scattered data
forms separate data islands, which makes it impossible to
learn a traditional model with aggregated data.

2.2 Federated Learning
Federated learning is a usual way to combine each client’s
information while protecting data privacy and security [11].

It was first proposed by Google [13], where they proposed
FedAvg to train machine learning models via aggregating
distributed mobile phones’ information without exchang-
ing data. The key idea is to replace direct data exchanges
with model parameter-related exchanges. FedAvg is able to
resolve the data islanding problems.

Although federated learning is an emerging field, it has
attracted much attention [28], [29]. Federated learning can
be divided into horizontal federated learning, vertical fed-
erated learning, and federated transfer learning according to
the characteristics data. When the client features of the two
datasets overlap a lot but the clients overlap little, horizontal
federated learning can be applied [13]. In the horizontal
federated learning, datasets are split horizontally and the
clients share the same features finally. For example, Smith
et al. [30] proposed a novel systems-aware optimization
method, MOCHA, to solve security problems in multitask-
ing. When the client features of the two datasets overlap
little but the clients overlap a lot, we can utilize vertical
federated learning, where different clients have different
columns of the features [31]. For example, Cheng et al. [32]
proposed a novel lossless privacy-preserving tree-boosting
system known as SecureBoost to jointly conduct over multi-
ple parties with partially common client samples but differ-
ent feature sets. When the clients and client features of the
two datasets both rarely overlap, federated transfer learning
is often utilized [33], [34]. For example, Yoon et al. [35]
proposed a novel federated continual learning framework,
Federated Weighted Inter-client Transfer (FedWeIT), which
decomposed the network weights into global federated pa-
rameters and sparse task-specific parameters. In [35], each
client received selective knowledge from other clients by
taking a weighted combination of their task-specific pa-
rameters. In addition, many methods, such as differential
privacy, are proposed to protect data further [36], [37]. In
this paper, we mainly focus on horizontal federated learning
when the training data are not independent and identically
distributed (Non-IID) on the clients.

Although FedAvg works well in many situations, it
may still suffer from the non-iid data and fail to build
personalized models for each client [30], [38], [39]. A survey
about federated Learning on non-iid Data can be found
here [40]. FedProx [17] tackled data non-iid by allowing
partial information aggregation and adding a proximal term
to FedAvg. [41] aggregated the models of the clients with
weights computed via L1 distance among client models’
parameters. These works focus on a common model shared
by all clients while some other works try to obtain a unique
model for each client. [42] exchanged information of base
layers and preserved personalization layer to combat the
ill-effects of non-iid. [43] utilized Moreau envelopes as
clients’ regularized loss function and decoupled personal-
ized model optimization from the global model learning in a
bi-level problem stylized for personalized FL. [44] evaluated
three techniques for local adaptation of federated models:
fine-tuning, multi-task learning, and knowledge distillation.
[45] also proposed and analyzed three approaches: user
clustering, data interpolation, and model interpolation. [46]
tried to jointly learn compact local representations on each
device and a global model across all devices with a theoretic
analysis. [47] proposed APFL where each client would train
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Fig. 2. The structure of the FedAP method.

their local models while contributing to the global model.
Another work [48], Clustered Federated Learning (CFL),
grouped the client population into clusters with jointly
trainable data distributions. Two works most relevant to
our method are FedHealth [18] and FedBN [19]. FedHealth
needs to share some datasets with all clients while FedBN
used local batch normalization to alleviate the feature shift
before averaging models. Although there are already some
works to cope with data non-iid, few works pay attention
to feature shift non-iid and other shifts at the same time and
obtaining an individual model for each client in healthcare.

2.3 Batch Normalization
Batch Normalization (BN) [49] is an important component
of deep learning. Batch Normalization improves the perfor-
mance of the model and has a natural advantage in dealing
with domain shifts. Li et al. [50] proposed an adaptive
BN for domain adaptation where they learned domain-
specific BN layers. Nowadays, researchers have explored
many effects of BN, especially in transfer learning [51].
FedBN [19] is one of few applications of BN in the field of
FL field. However, FedBN does still not make full use of BN
properties, and it does not consider the similarities among
the clients.

3 METHOD

3.1 Problem Formulation
In federated learning, there are N different clients (or-
ganizations or users), denoted as {C1, C2, · · · , CN} and
each client has its own dataset, i.e. {D1,D2, · · · ,DN}. Each
dataset Di = {(xi,j , yi,j)}ni

j=1 contains two parts, i.e. a

train dataset Dtr
i = {(xtr

i,j , y
tr
i,j)}

ntr
i

j=1 and a test dataset

Dte
i = {(xte

i,j , y
te
i,j)}

nte
i

j=1. Obviously, ni = ntri + ntei and
Di = Dtr

i ∪ Dte
i . All of the datasets have different distri-

butions, i.e. P (Di) 6= P (Dj). Each client has its own model

denoted as {fi}Ni=1. Our goal is to aggregate information of
all clients to learn a good model fi for each client on its local
dataset Di without private data leakage:

min
{fk}Nk=1

1

N

N∑
i=1

1

ntei

nte
i∑

j=1

`(fi(x
te
i,j), y

te
i,j), (1)

where ` is a loss function.

3.2 Motivation

There are mainly two challenges for personalized health-
care: data islanding and personalization. Following Fe-
dAvg [13] and some other traditional federated learning
methods [52], [53], it is easy to cope with the first challenge.
Personalization is a must in many applications, especially
in healthcare. It is better to train a unique model in each
client for personalization. However, one client often lacks
enough data to train a model with high accuracy in feder-
ated learning. In addition, clients do not have access to the
data of other clients. Overall, it is a challenge that how to
achieve personalization to obtain high accuracy in federated
learning. As mentioned in [50], batch normalization (BN)
layers contain sufficient statistics (including mean and stan-
dard deviation) of features (outputs of layers). Therefore,
BN has been utilized to represent distributions of training
data indirectly in many works [50], [54]. We mainly use BN
to represent the distributions of clients. Therefore, on the
one hand, we utilize local BN to preserve clients’ feature
distributions. On the other hand, we also use BN-related
statistics to calculate the similarity between clients for better
personalization with weighted aggregation1.

1. Please note that we only share the statistics of the batch normaliza-
tion layers, and no existing work shows that any methods can restore
the specific sample with the statistics of certain layers [55], [56].
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Fig. 3. The concrete process of the FedAP.

3.3 Our Approach: FedAP

In this paper, we propose FedAP (Adaptive Federated
Learning) to achieve accurate personal healthcare via adap-
tive batch normalization without compromising data pri-
vacy and security. Fig. 2 gives an overview of its structure.
Without loss of generality, we assume there are three clients,
which can be extended to more general cases. The structure
mainly contains five steps:

1) The server distributes the pre-trained model to each
client.

2) Each client computes statistics of the outputs of specific
layers according to local data.

3) The server obtains the client similarities denoted by
weight matrix W to guide aggregation.

4) Each client updates its own model with the local train
data and pushes its model to the server.

5) The server aggregates models and obtains N models
delivered to N clients respectively.

For stability and simplicity, we only calculate W once
and we show that computing once is enough to achieve
acceptable performance in experiments. Note that all pro-
cesses do not involve the direct transmission of data, so
FedAP avoids the leakage of private data and ensures secu-
rity. The keys of FedAP are obtaining W and aggregating
the models. We will introduce how to compute W after
describing the process of model aggregation.

We denote the parameters of each model fi as θi = φi ∪
ψi, where φi corresponds to the parameters of BN layers
specific to each client and ψi is the parameters of the other
layers (colored blocks in Fig. 3). W is an N × N matrix,
which describes the similarities among the clients. wij ∈
[0, 1] represents the similarity between client i and client j:
the larger wij is, the more similar the two clients are.

Fig. 3 demonstrates the process of model aggregation.
As shown in Fig. 3, φi is particular while ψi is computed
according to wi, where wi means the i−th row of W, andψ,
whereψ = {ψi}Ni=1.φi is BN parameters that are not shared
across clients while ψi is other parameters that are shared.

Algorithm 1 FedAP

Input: A pre-trained model f , data of N clients {Di}Ni=1, λ
Output: Client models {fi}Ni=1

1: Distribute f to each client
2: Each client computes its statistics (µi,σi), where µi

represents the mean values while σi represents the
covariance matrices. Push (µi,σi) to the server

3: Compute W according to the statistics
4: Update clients’ model with local data. Push updated

parameter {θt∗i }Ni=1 to the server
5: Update {θt+1

i }Ni=1 according to Eq. (2) and distribute
them to the corresponding clients

6: Repeat steps 4 ∼ 5 until convergence or maximum
round reached

Let θti = φt
i ∪ ψ

t
i represent the parameters of the model

from client i in the round t. After updating θti with the local
data from the i−th client, we obtain updated parameters
θt∗i = φt∗

i ∪ ψ
t∗
i . We use the ∗ notation to denote updated

parameters. Then, for aggregation on the server, we have
the following updating strategy:{

φt+1
i = φt∗

i

ψt+1
i =

∑N
j=1 wijψ

t∗
j .

(2)

The overall process of FedAP is described in Algo-
rithm 1. In the next sections, we will introduce how to
compute the weight matrix W.

3.4 Evaluate Weights
In this section, we will evaluate the weights with a pre-
trained model f and propose two alternatives to compute
the weights. We mainly rely on the feature output statis-
tics of clients’ data in the pre-trained network to compute
weights.

We denote with l ∈ {1, 2, · · · , L} in superscript nota-
tions the different batch normalization layers in the model.
And zi,l represents the input of l−th batch normalization
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layer in the i−th client. The input of the classification layer
in the i−th client is denoted as zi which represents the
domain features. We assume zi,l is a matrix, zi,lci,l×si,l where
ci,l corresponds to the channel number while si,l is the
product of the other dimensions. Similarly, zi = zici×si .
We feed Di into f , and we can obtain zi,lci,l×si,l . Obviously,
si,l = e× ni where e is an integer. Now, we try to compute
statistics on the channels, and we treat zi,l as a Gaussian
distribution. For the l−th layer of the i−th client, it is easy
to obtain its distribution, N (µi,l,σi,l). We only compute
statistics of inputs of BN layers. And the BN statistics of
the i−th client is formulated as:

(µi,σi) = [(µi,1,σi,1), (µi,2,σi,2), · · · , (µi,L,σi,L)]. (3)

Now we can calculate the similarity between two clients.
It is popular to adopt the Wasserstein distance to calculate
the distance between two Gaussian distributions:

W 2
2 (N (µi,l,σi,l),N (µj,l,σj,l))

=||µi,l − µj,l||2+
tr(σi,l + σj,l − 2((σi,l)1/2σj,l(σi,l)1/2)1/2),

(4)

where tr is the trace of the matrix. Obviously, it is costly
and difficult to perform efficient calculations. Similar to BN,
we perform approximations and consider that each channel
is independent of the others. Therefore, σi,l is a diagonal
matrix, i.e. σi,l = Diag(ri,l). Therefore, we compute the
approximation of Wasserstein distance as:

W 2
2 (N (µi,l,σi,l),N (µj,l,σj,l))

=||µi,l − µj,l||2 + ||
√
ri,l −

√
rj,l||22.

(5)

Thus, the distance between two clients i, j is computed
as:

di,j =
L∑

l=1

W2(N (µi,l,σi,l),N (µj,l,σj,l))

=
L∑

l=1

(||µi,l − µj,l||2 + ||
√
ri,l −

√
rj,l||22)1/2.

(6)

Large di,j means the distribution distance between the
i−th client and the jth client is large. Therefore, the larger
di,j is, the less similar the two clients are, which means the
smaller wi,j is. And we set w̃i,j as the inverse of di,j , i.e.
w̃i,j = 1/di,j , j 6= i. Normalize w̃i and we have

ŵi,j =
w̃i,j∑N

j=1,j 6=i w̃i,j

, where j 6= i (7)

For stability in training, we take ψt∗ into account for
ψt+1. We update ψt+1 in a moving average style, and we
set wi,i = λ. Therefore,

wi,j =

{
λ, i = j,

(1− λ)× ŵi,j , i 6= j.
(8)

We denote this weighting method as the original FedAP.
Similarly, we can obtain the corresponding W using only
the last layer zi and we denote this variant as d-FedAP.
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Fig. 4. Running mean, running var of a BN layer and the inputs statistics
of the corresponding layer in a client model.

3.5 Discussion
In some extreme cases, there may not exist a pre-trained
model. In this situation, we can evaluate weights with
models trained from several rounds of FedBN [19].

As we can see from Fig. 4, the running mean of the BN
layer has a positive correlation with the statistical mean of
the corresponding layer’s inputs. And the variance has a
similar relationship. From this, we can use running means
and running variances of the BN layers instead of the statis-
tics respectively. Therefore, we can perform several rounds
of FedBN [19] which preserves local batch normalization,
and utilize parameters of BN layers to replace the statistics
when there does not exist a pre-trained model. We denote
this variant as f-FedAP.

4 EXPERIMENTS

We evaluate the performance of FedAP on five healthcare
datasets in time series and image modalities2. The statistical
information of each dataset is shown in TABLE 1.

4.1 Datasets
PAMAP2. We adopt a public human activity recognition
dataset called PAMAP2 [57]. The PAMAP2 dataset contains
data of 18 different physical activities, performed by 9
subjects wearing 3 inertial measurement units and a heart
rate monitor. We use data of 3 inertial measurement units
which are collected at a constant rate of 100Hz to form
data containing 27 channels. We exploit the sliding win-
dow technique and filter out 10 classes of data3. In order
to construct the problem situation in FedAP, we use the
Dirichlet distribution as in [58] to create disjoint non-iid
splits. client training data. Fig. 5(d) visualizes how samples
are distributed among 20 clients. In each client, half of the

2. Code is released at https://github.com/jindongwang/
tlbook-code/tree/main/chap19 fl and https://github.com/
microsoft/PersonalizedFL.

3. We split PAMAP2 in this style mainly for two reasons. On the
one hand, the data numbers of the subjects are different which may
introduce some other problems, e.g. some clients cannot be adequately
evaluated. On the other hand, this splitting routing is widely adopted
in much work [58], [59]. We select 10 classes with the most samples.

https://github.com/jindongwang/tlbook-code/tree/main/chap19_fl
https://github.com/jindongwang/tlbook-code/tree/main/chap19_fl
https://github.com/microsoft/PersonalizedFL
https://github.com/microsoft/PersonalizedFL
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Fig. 5. The number of samples per class allocated to each client (indicated by dot size).

data are used to train and the remaining data are for testing
as in [19].

COVID-19. We also adopt a public COVID-19 posterior-
anterior chest radiography images dataset [60]. This is a
combined curated dataset of COVID-19 Chest X-ray images
obtained by collating 15 public datasets and it contains 9,208
instances of four classes (1,281 COVID-19 X-Rays, 3,270
Normal X-Rays, 1,656 viral-pneumonia X-Rays, and 3,001
bacterial-pneumonia X-Rays) in total. In order to construct
the problem situation in FedAP, we split the dataset similar
to PAMAP2. Fig. 5(e) visualizes how samples are distributed
among 20 clients for COVID-19. Note that this dataset is
more unbalanced in classes which is an ideal testbed to
test the performance under label shift (i.e., imbalanced class
distribution for different clients). In each client, half of the
data are used to train and the remaining data are for testing.

MedMnist. MedMNIST [61], [62] is a large-scale MNIST-
like collection of standardized biomedical images, including
12 datasets for 2D and 6 datasets for 3D. All images are
28 × 28 (2D) or 28 × 28 × 28 (3D). We choose 3 datasets
which have most classes from 12 2D datasets: OrganAM-
NIST, OrganCMNIST, OrganSMNIST [63], [64]. These three
datasets are all about Abdominal CT images and all contain
11 classes. There are 58,850, 23,660 and 25,221 samples
respectively. As operations in PAMAP2, each dataset is split
into 20 clients with Dirichlet distributions, and Fig. 5(a)-5(c)
visualizes how samples are distributed for OrganAMNIST,
OrganCMNIST, and OrganSMNIST respectively. In each
client, half of the data are used to train and the remaining
data are for testing.

TABLE 1
Statistical information of five datasets.

Dataset Type #Class #Sample

PAMAP2 Sensor-based time series 18 3,850,505
COVID-19 Image 4 9,208

OrganAMNIST Image 11 58,850
OrganCMNIST Image 11 23,660
OrganSMNIST Image 11 25,221

4.2 Implementations Details and Comparison Methods

For PAMAP2, we adopt a CNN for training and predicting.
The network is composed of two convolutional layers, two
pooling layers, two batch normalization layers, and two
fully connected layers. For three MedMNIST datasets, we all
adopt LeNet5 [65]. For COVID-19, we adopt Alexnet [66].
We use a three-layer fully connected neural network as
the classifier with two BN layers after the first two fully
connected layers following [19]. For model training, we use
the cross-entropy loss and SGD optimizer with a learning
rate of 10−2. If not specified, our default setting for local
update epochs is E = 1 where E means training epochs in
one round. And we set λ = 0.5 for our method, since we
can see that λ has few influences on accuracy and it only
affects convergence speeds in the appendix. In addition, we
randomly select 20% of the data to train a model of the same
architecture as the pre-trained model. We run three trials to
record the average results.

We compare three extensions of our method with five
methods including common FL methods and some FL meth-
ods designed for non-iid data:
• Base: Each client uses local data to train its local models
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TABLE 2
Activity recognition results on PAMAP2. Bold and underline mean the

best and second-best results, respectively.

Client Base FedAvg FedBN FedProx FedPer FedAP

1 92.86 60.27 60.72 60.5 48.31 77.2
2 17.68 62.36 62.59 62.36 97.51 77.55
3 100 50.56 50.34 50.34 61.4 77.43
4 83.52 73.98 73.53 73.98 47.29 79.64
5 18.78 74.27 74.72 73.81 58.47 81.94
6 77.66 62.9 62.44 61.76 23.98 79.86
7 95.05 64.03 62.9 63.57 49.55 86.2
8 17.58 87.78 88.24 87.78 91.86 95.02
9 92.39 74.49 74.27 74.27 51.24 85.33

10 93.37 64.71 64.48 64.71 77.6 69.23
11 29.12 65.24 65.69 66.37 89.16 91.42
12 84.78 63.35 62.9 63.12 57.92 79.41
13 98.9 68.33 68.33 68.33 42.53 74.43
14 24.18 64.79 65.24 65.69 49.44 69.75
15 98.91 63.12 62.44 62.44 58.6 81.67
16 98.9 85.26 85.94 85.49 86.62 94.1
17 41.44 66.21 65.99 66.21 77.32 82.77
18 93.62 59.64 59.64 59.41 52.38 75.74
19 85.71 67.87 68.1 67.87 73.08 77.15
20 37.02 72.46 72.69 72.46 97.52 86.91

avg 69.07 67.58 67.56 67.52 64.59 81.14

TABLE 3
Accuracy on OrganAMNIST. Bold and underline mean the best and

second-best results, respectively.

Client Base FedAvg FedBN FedProx FedPer FedAP

1 48.35 80.03 96.06 80.37 83.22 81.86
2 55.25 92.46 93.14 92.26 78.68 94.5
3 34.04 86.15 96.27 86.22 71.08 97.08
4 61.54 77.65 87.91 77.58 41.71 88.52
5 41.44 92.32 100 92.66 100 99.93
6 52.13 84.38 97.55 84.92 80.57 95.52
7 42.31 83.42 50.07 82.95 64.06 87.84
8 48.9 92.81 97.15 92.94 87.86 96.95
9 38.04 74.66 84.1 74.39 62.16 85.46

10 38.12 72.27 82.98 72.34 53.22 87.53
11 59.89 74.88 90.36 74.88 66.33 91.79
12 59.78 78.41 90.56 78.28 72.84 89.75
13 44.75 91.17 97.69 91.04 78.14 97.42
14 52.2 83.76 92.26 83.9 61.28 90.29
15 53.26 89.61 87.84 90.42 58.29 94.29
16 70.88 83.31 93.62 83.18 73.54 91.59
17 36.46 92.93 62.77 92.93 45.92 94.97
18 46.81 77.99 96.94 77.92 78.12 96.67
19 31.32 92.05 96.94 92.26 93.95 96.47
20 45.3 81.02 91.32 80.75 49.36 93.97

avg 48.04 84.06 89.28 84.11 70.02 92.62

without federated learning.
• FedAvg [13]: The server aggregates all client models

without any particular operations for non-iid data.
• FedProx [17]: Allow partial information aggregation

and add a proximal term to FedAvg.
• FedPer [42]: Each client preserves some local layers.
• FedBN [19]: Each client preserves the local batch nor-

malization.

4.3 Classification Accuracy
The classification results for each client on PAMAP2 are
shown in TABLE 2. From these results, we have the follow-
ing observations: 1) Our method achieves the best results
on average. It is obvious that our method significantly

TABLE 4
Accuracy on OrganCMNIST. Bold and underline mean the best and

second-best results, respectively.

Client Base FedAvg FedBN FedProx FedPer FedAP

1 32.61 79.22 90.54 79.73 77.87 94.59
2 52.17 95.61 100 95.95 100 100
3 47.1 85.83 88.7 85.83 72.85 93.93
4 37.23 84.34 96.97 84.01 74.41 96.3
5 48.91 92.41 96.46 92.24 84.49 97.13
6 51.45 65.6 75.89 65.6 53.96 85.5
7 64.49 86.22 86.72 86.55 76.64 89.08
8 45.65 50.93 61.38 50.59 38.45 92.07
9 26.09 81.28 91.23 80.61 45.03 86.68

10 57.25 54.56 93.41 54.9 80.07 91.89
11 54.89 79.73 94.76 79.73 83.78 91.39
12 50.72 90.56 95.78 90.39 67.28 89.38
13 66.67 49.33 54.71 49.16 52.36 89.73
14 37.16 74.32 88.34 73.99 70.61 87.33
15 58.57 75.93 86.36 75.59 51.52 89.9
16 52.9 81.25 98.82 80.91 98.99 98.82
17 50 67.45 83.81 67.45 70.66 81.11
18 52.9 88.18 90.71 88.18 65.37 91.89
19 26.28 94.26 100 94.26 100 99.83
20 59.78 90.25 88.91 90.25 58.49 93.78

avg 48.64 78.36 88.18 78.3 71.14 92.02

TABLE 5
Accuracy on OrganSMNIST. Bold and underline mean the best and

second-best results, respectively.

Client Base FedAvg FedBN FedProx FedPer FedAP

1 25.27 47.39 91.76 39.94 85.74 90.65
2 32.04 55.7 96.04 62.82 94.78 93.51
3 30.85 63.13 71.84 66.3 52.69 73.89
4 41.21 59.65 78.8 61.71 64.56 75.32
5 37.02 68.45 80.28 73.03 68.61 83.12
6 40.43 48.02 77.02 52.3 58 80.67
7 38.46 78.2 83.57 71.25 78.2 85.47
8 40.11 57.44 53.48 41.93 96.52 96.2
9 42.39 83.73 94.94 87.99 92.42 94.94
10 24.86 88.45 99.21 87.97 97.47 99.37
11 38.46 60.79 45.04 37.17 54.49 76.06
12 41.3 79.15 81.67 83.57 78.04 88.47
13 43.65 66.98 79.94 67.93 58.29 80.57
14 44.51 84.99 95.73 86.57 84.52 92.58
15 44.57 80.7 88.77 84.49 73.1 87.34
16 48.9 52.06 73.58 53.64 71.36 73.58
17 36.46 36.55 78.48 39.56 61.55 76.42
18 45.74 58.7 79.43 60.44 69.3 79.59
19 30.77 53.48 86.23 61.87 64.72 91.46
20 35.91 72.51 72.99 77.57 86.57 68.4

avg 38.15 64.8 80.44 64.9 74.55 84.38
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Fig. 6. Average accuracy of 20 clients on COVID-19.

outperforms other methods with a remarkable improve-
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Fig. 8. Influence of Dataset split and Iteration-Round.

ment (over 10% on average). 2) In some clients, the base
method achieves the best test accuracy. As it can be seen
from Fig. 5(d), the distributions on the clients are very
inconsistent, which inevitably leads to the various difficulty
levels in different clients. And some distributions in the
corresponding clients are so easy that only utilizing the local
data can achieve the ideal effects. 3) FedBN does not achieve
the desired results. This could be caused by that FedBN is
designed for the feature shifts while our experiments are
mainly set in the label shifts.

The classification results for each client on three MedM-
NIST datasets are shown in TABLE 3, 4, 5 respevtively.
From these results, we have the following observations: 1)
Our method significantly outperforms other methods with
a remarkable improvement (over 3.5% on average). 2) For
all these three benchmarks, Base achieves the worst average
accuracy, which demonstrates Base without communicating
with each other does not have enough information for these
relatively difficult tasks. 3) FedBN achieves the second best
results on all three benchmarks. This could be because that
there exist feature shifts among clients.

The classification results for each client on COVID-19 are
shown in Fig. 6. From these results, we have the following
observations: 1) Our method achieves the best average ac-
curacy which outperforms the second-best method FedPer
by 6.3% on average accuracy. 2) FedBN gets the worst
results. This demonstrates that FedBN is not good at dealing
with label shifts where label distributions of each client
are different, which is a challenging situation. FedBN does
not consider the similarities among different clients. From
Fig. 5(e), we can see that label shifts are serious in COVID-
19 since it only has four classes.
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Fig. 9. Evaluating two variants of FedAP.

4.4 Analysis and discussion

We consider the influence of data splits and local iterations
in this section. As shown in Fig. 8(a), we evaluate Fedavg
and FedAP on three MedMNIST benchmarks with two
different splits: α = 0.1 and α = 0.05 respectively. Smaller α
means distributions among clients are more different from
each other. Fig. 8(a) demonstrates that the performance of
Fedavg which does not consider data non-iid will drop
when encountering clients with greater different distribu-
tions while our method is not affected much by the degree
of data non-iid, which means our method may be more
robust. Fig. 8(b) shows the influence of local iterations
and total rounds on FedBN and our method. It is obvious
that FedBN drops seriously with more local iterations and
fewer communication rounds while our method declines
slowly, which means when limiting communication costs,
our method may be more effective.

4.5 Ablation Study

Effects of Weighting.
To demonstrate the effect of weighting which considers

the similarities among the different clients, we compare
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Fig. 10. Parameter sensitivity analysis.

the average accuracy on PAMAP2 and COVID-19 between
the experiments with it and without it. Without weighting,
our method degenerates to FedBN. From Fig. 7(a), we can
see that our method performs much better than FedBN
which does not include the weighting part. Moreover, from
Fig. 7(b), we can see our method performs better than
FedBN on all clients. These results demonstrate that our
method with weighting can cope with the label shifts while
FedBN cannot deal with this situation, which means our
method is more applicable and effective.
Effects of Preserving Local Batch Normalization.

We illustrate the importance of preserving local batch
normalization. Fig. 7(c) shows the average accuracy
between the experiments with preserving local batch
normalization and the experiments with sharing common
batch normalization while Fig. 7(d) shows the results on
each client. LBN means preserving local batch normalization
while SBN means sharing common batch normalization.
Obviously, the improvements are not particularly significant
compared with weighting. This may be caused by there
mainly exist the label shifts in our experiments while
preserving local batch normalization is for the feature
shifts. However, our method still has a slight improvement,
indicating its superiority.

Different Implementations of Our methods.
In Method section, we propose three implementations

of our method: FedAP, d-FedAP, and f-FedAP. The main
differences among them are how to calculate W. In Fig. 9(a)
and Fig. 9(b), we can see that all three implementations
achieve better average accuracy on both PAMAP2 and
COVID compared with FedAvg and FedBN. In addition, f-
FedAP performs slightly worse than the other two variants,
which may be because it only utilizes weighting during half
rounds for fairness and the other half are for obtaining W.

4.6 Convergence and Parameter Sensitivity

We study the convergence of our method. From Fig. 11, we
can see our method almost convergences in the 10th round.
And in the actual experiments, 20 rounds are enough for
our method while FedBN needs over 400 rounds.

Then, we evaluate the parameter sensitivity of FedAP.
Our method is affected by three parameters: local epochs,
client number, and λ. We change one parameter and fix the
other parameters.

From Fig. 10(a), we can see that our method still achieves
acceptable results. When the client numbers increase, our
method goes down which may be due to that few data in
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Fig. 11. Convergence analysis of different methods.

local clients make the weight estimation inaccurate. And we
may take f-FedAP instead. In Fig. 10(b), we can see our
method is the best and it is descending with local epochs
increasing, which may be caused that we keep the total
number of the epochs unchanged and the communication
among the clients are insufficient. Fig. 10(c)-10(d) demon-
strates λ slightly affects the average accuracy of our method
while it can change the convergence rate. The results reveal
that FedAP is more effective and robust than other methods
under different parameters in most cases.

5 CONCLUSIONS AND FUTURE WORK

In this article, we proposed FedAP, a weighted personalized
federated transfer learning algorithm via batch normaliza-
tion for healthcare. FedAP aggregates the data from differ-
ent organizations without compromising privacy and se-
curity and achieves relatively personalized model learning
through combing considering similarities and preserving
local batch normalization. Experiments have evaluated the
effectiveness of FedAP. In the future, we plan to apply
FedAP to more personalized and flexible healthcare. And
we will consider better ways to calculate and update simi-
larities among clients.
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[51] M. Segù, A. Tonioni, and F. Tombari, “Batch normalization
embeddings for deep domain generalization,” arXiv preprint
arXiv:2011.12672, 2020.

[52] H. Gao, A. Xu, and H. Huang, “On the convergence of
communication-efficient local sgd for federated learning,” in Pro-
ceedings of the AAAI Conference on Artificial Intelligence, vol. 35, no. 9,
2021, pp. 7510–7518.

[53] X. Cao, J. Jia, and N. Z. Gong, “Provably secure federated learning
against malicious clients,” in Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 35, no. 8, 2021, pp. 6885–6893.

[54] W.-G. Chang, T. You, S. Seo, S. Kwak, and B. Han, “Domain-
specific batch normalization for unsupervised domain adapta-
tion,” in Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 2019, pp. 7354–7362.

[55] L. Zhu, Z. Liu, and S. Han, “Deep leakage from gradients,”
Advances in Neural Information Processing Systems, vol. 32, 2019.

[56] H. Yin, A. Mallya, A. Vahdat, J. M. Alvarez, J. Kautz, and
P. Molchanov, “See through gradients: Image batch recovery via
gradinversion,” in Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, 2021, pp. 16 337–16 346.

[57] A. Reiss and D. Stricker, “Introducing a new benchmarked dataset
for activity monitoring,” in 2012 16th International Symposium on
Wearable Computers. IEEE, 2012, pp. 108–109.

[58] M. Yurochkin, M. Agarwal, S. Ghosh, K. Greenewald, N. Hoang,
and Y. Khazaeni, “Bayesian nonparametric federated learning of
neural networks,” in International Conference on Machine Learning.
PMLR, 2019, pp. 7252–7261.

[59] T. Lin, S. P. Karimireddy, S. Stich, and M. Jaggi, “Quasi-global
momentum: Accelerating decentralized deep learning on hetero-
geneous data,” in International Conference on Machine Learning.
PMLR, 2021, pp. 6654–6665.

[60] U. Sait, K. G. Lal, S. Prajapati, R. Bhaumik, T. Kumar, S. Sanjana,
and K. Bhalla, “Curated dataset for covid-19 posterior-anterior
chest radiography images (x-rays),” Mendeley Data, vol. 1, 2020.

[61] J. Yang, R. Shi, and B. Ni, “Medmnist classification decathlon:
A lightweight automl benchmark for medical image analysis,”
in IEEE 18th International Symposium on Biomedical Imaging (ISBI),
2021, pp. 191–195.

[62] J. Yang, R. Shi, D. Wei, Z. Liu, L. Zhao, B. Ke, H. Pfister, and B. Ni,
“Medmnist v2: A large-scale lightweight benchmark for 2d and 3d
biomedical image classification,” arXiv preprint arXiv:2008.#TODO,
2021.

[63] P. Bilic, P. F. Christ, E. Vorontsov, G. Chlebus, H. Chen, Q. Dou,
C.-W. Fu, X. Han, P.-A. Heng, J. Hesser et al., “The liver tumor
segmentation benchmark (lits),” arXiv preprint arXiv:1901.04056,
2019.

[64] X. Xu, F. Zhou, B. Liu, D. Fu, and X. Bai, “Efficient multiple organ
localization in ct image using 3d region proposal network,” IEEE
transactions on medical imaging, vol. 38, no. 8, pp. 1885–1898, 2019.

[65] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proceedings of the IEEE,
vol. 86, no. 11, pp. 2278–2324, 1998.

[66] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classifi-
cation with deep convolutional neural networks,” in Advances in
neural information processing systems, vol. 25, 2012, pp. 1097–1105.


	1 Introduction
	2 Related Work
	2.1 Machine Learning and Healthcare
	2.2 Federated Learning
	2.3 Batch Normalization

	3 Method
	3.1 Problem Formulation
	3.2 Motivation
	3.3 Our Approach: FedAP
	3.4 Evaluate Weights
	3.5 Discussion

	4 Experiments
	4.1 Datasets
	4.2 Implementations Details and Comparison Methods
	4.3 Classification Accuracy
	4.4 Analysis and discussion
	4.5 Ablation Study
	4.6 Convergence and Parameter Sensitivity

	5 Conclusions and Future Work
	References

