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Multi-Sensor Time-Series Signals
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Abstract—Nowadays, multi-sensor technologies are applied in many fields, e.g., Health Care (HC), Human Activity Recognition
(HAR), and Industrial Control System (ICS). These sensors can generate a substantial amount of multivariate time-series data.
Unsupervised anomaly detection on multi-sensor time-series data has been proven critical in machine learning researches. The key
challenge is to discover generalized normal patterns by capturing spatial-temporal correlation in multi-sensor data. Beyond this
challenge, the noisy data is often intertwined with the training data, which is likely to mislead the model by making it hard to distinguish
between the normal, abnormal, and noisy data. Few of previous researches can jointly address these two challenges. In this paper, we
propose a novel deep learning-based anomaly detection algorithm called Deep Convolutional Autoencoding Memory network
(CAE-M). We first build a Deep Convolutional Autoencoder to characterize spatial dependence of multi-sensor data with a Maximum
Mean Discrepancy (MMD) to better distinguish between the noisy, normal, and abnormal data. Then, we construct a Memory Network
consisting of linear (Autoregressive Model) and non-linear predictions (Bidirectional LSTM with Attention) to capture temporal
dependence from time-series data. Finally, CAE-M jointly optimizes these two subnetworks. We empirically compare the proposed
approach with several state-of-the-art anomaly detection methods on HAR and HC datasets. Experimental results demonstrate that
our proposed model outperforms these existing methods.

Index Terms—Unsupervised anomaly detection, Multi-sensor time series, Convolutional autoencoder, Attention based BiLSTM.
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1 INTRODUCTION

ANOMALY detection has been one of the core research
areas in machine learning for decades, with wide ap-

plications such as cyber-intrusion detection [1], medical care
[2], sensor networks [3], video anomaly detection [4] and so
on. Anomaly detection seems to be a simple two-category
classification, i.e., we can learn to classify the normal or
abnormal data. However, it is also faced with the following
challenges. First, training data is highly imbalanced since
the anomalies are often extremely rare in a dataset compared
to the normal instances. Standard classifiers try to maximize
accuracy in classification, so it often falls into the trap of
overlapping problem, which means that the model classifies
the overlapping region as belonging to the majority class
while assuming the minority class as noise. Second, there is
no easy way for users to manually label each training data,
especially the anomalies. In many cases, it is prohibitively
hard to represent all types of anomalous behaviors. Due to
above challenges, there is a growing trend to use unsuper-
vised learning approaches for anomaly detection compared
with semi-supervised and supervised learning approaches
since unsupervised methods can handle the imbalanced and
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unlabeled data in a more principled way [5]–[9].
Nowadays, the prevalence of sensors in machine learn-

ing and pervasive computing research areas such as Health
Care (HC) [10], [11] and Human Activity Recognition
(HAR) [12], [13] generate a substantial amount of multi-
variate time-series data. These learning algorithms based on
multi-sensor time-series signals give priority to dealing with
spatial-temporal correlation of multi-sensor data. Many ap-
proaches for spatial-temporal dependency amongst multi-
ple sensors [14]–[16] have been studied. It seems intuitive to
apply previous unsupervised anomaly detection methods
on multi-sensor time-series data. Unfortunately, there are
still several challenges.

First, anomaly detection in spatial-temporal domain
becomes more complicated due to the temporal compo-
nent in time-series data. Conventional anomaly detection
techniques such as PCA [17], k-means [18], OCSVM [19]
and Autoencoder [20] are unable to deal with multivari-
ate time-series signals since they cannot simultaneously
capture the spatial and temporal dependencies. Second,
these reconstruction-based models such as Convolutional
AutoEncoders (CAEs) [21] and Denoising AutoEncoders
(DAEs) [22] are usually used for anomaly detection. It
is generally assumed that the compression of anomalous
samples is different from that on normal samples, and the
reconstruction error becomes higher for these anomalous
samples. In reality, being influenced by the high complexity
of model and the noise of data, the reconstruction error
for the abnormal input could also be fit so well by the
training model [23], [24]. That is, the model is robust to
noise and anomalies. Third, in order to reduce the dimen-
sionality of multi-sensor data and detect anomalies, two-
step approaches are widely adopted. As for the drawback
of some works [25], [26], the joint performance of two
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baseline models can easily get stuck in local optima, since
two models are trained separately.

In order to solve the above three challenges, this paper
presents a novel unsupervised deep learning based anomaly
detection approach for multi-sensor time-series data called
Deep Convolutional Autoencoding Memory network (CAE-
M). The CAE-M network composes of two main sub-
networks: characterization network and memory network.
Specifically, we employ deep convolutional autoencoder
as feature extraction module, with attention-based Bidirec-
tional LSTMs and Autoregressive model as forecasting mod-
ule. By simultaneously minimizing reconstruction error and
prediction error, the CAE-M model can be jointly optimized.
During the training phase, the CAE-M model is trained to
explicitly describe the normal pattern of multi-sensor time-
series data. During the detection phase, the CAE-M model
calculate the compound objective function for each captured
testing data. Through combining these errors as a composite
anomaly score, a fine-grained anomaly detection decision
can be made. To summarize, the main contributions of this
paper are four-fold:

1) The proposed composite model is designed to char-
acterize complex spatial-temporal patterns by concurrently
performing the reconstruction and prediction analysis. In
reconstruction analysis, we build Deep Convolutional Au-
toencoder to fuse and extract low-dimensional spatial fea-
tures from multi-sensor signals. In prediction analysis,
we build Attention-based Bidirectional LSTM to capture
complex temporal dependencies. Moreover, we incorporate
Auto-regressive linear model in parallel to improve the
robust and adapt for different use cases and domains.

2) To reduce the influence of noisy data, we improve
Deep Convolutional Autoencoder with a Maximum Mean
Discrepancy (MMD) penalty. MMD is used to encourage
the distribution of the low-dimensional representation to
approximate some target distribution. It aims to make the
distribution of noisy data close to the distribution of nor-
mal training data, thereby reducing the risk of overfitting.
Experiments demonstrate that it is effective to enhance the
robustness and generalization ability of our method.

3) The CAE-M is an end-to-end learning model that
two sub-networks can co-optimize by a compound ob-
jective function with weight coefficients. This single-stage
approach can not only streamline the learning procedure for
anomaly detection, but also avoid the model getting stuck
in local minimum through joint optimization.

4) Experiments on three multi-sensor time-series datasets
demonstrate that CAE-M model has superior performance
over state-of-the-art techniques. In order to further verify
the effect of our proposed model, fine-grained analysis,
effectiveness evaluation, parameter sensitivity analysis and
convergence analysis show that all the components of CAE-
M together leads to the robust performance on all datasets.

The rest of the paper is organized as follows. Section
2 provides an overview of existing methods for anomaly
detection. Our proposed methodology and detailed frame-
work is described in Section 3. Performance evaluation and
analysis of experiment is followed in Section 4. Finally,
Section 5 concludes the paper and sketches directions for
possible future work.

2 RELATED WORK

Anomaly detection has been studied for decades. Based on
whether the labels are used in the training process, they
are grouped into supervised, semi-supervised and unsuper-
vised anomaly detection. Our main focus is the unsuper-
vised setting. In this section, we demonstrate various types
of existing approaches for unsupervised anomaly detection,
which can be categorized into traditional anomaly detection
and deep anomaly detection.

2.1 Traditional anomaly detection

Conventional methods can be divided into three categories.
1) Reconstruction-based methods are proposed to represent
and reconstruct accurately normal data by a model, for
example, PCA [17], Kernel PCA [27], [28] and Robust PCA
[29]. Specifically, RPCA is used to identify a low rank rep-
resentation including random noise and outliers by using
a convex relaxation of the rank operator; 2) Clustering
analysis is used for anomaly detection, such as Gaussian
Mixture Models (GMM) [30], k-means [18] and Kernel
Density Estimator (KDE) [31]. They cluster different data
samples and find anomalies via a predefined outlierness
score; 3) the methods of one-class learning model are also
widely used for anomaly detection. For instance, One-Class
Support Vector Machine (OCSVM) [19] and Support Vector
Data Description (SVDD) [32] seek to learn a discriminative
hypersphere surrounding the normal samples and then
classify new data as normal or abnormal.

It is notable that these conventional methods for
anomaly detection are designed for static data. To capture
the temporal dependencies appropriately, Autoregression
(AR) [33], Autoregressive Moving Average (ARMA) [34]
and Autoregressive Integrated Moving Average (ARIMA)
model [35] are widely used. These models represent time
series that are generated by passing the input through a
linear or nonlinear filter which produces the output at any
time using the previous output values. Once we have the
forecast, we can use it to detect anomalies and compare with
groundtruth. Nevertheless, AR model and its variants are
rarely used in multi-sensor multivariate time series due to
their high computational cost.

2.2 Deep anomaly detection

In deep learning-based anomaly detection, the reconstruc-
tion models, forecasting models as well as composite models
will be discussed.

2.2.1 Reconstruction models
The reconstruction model focuses on reducing the expected
reconstruction error by different methods. For instance,
Autoencoders [20] are often utilized for anomaly detection
by learning to reconstruct a given input. The model is
trained exclusively on normal data. Once it is not able to
reconstruct the input with equal quality compared to the
reconstruction of normal data, the input sequence is treated
as anomalous data. LSTM Encoder-Decoder model [36] is
proposed to learn temporal representation of the input time
series by LSTM networks and use reconstruction error to
detect anomalies. Despite its effectiveness, LSTM does not
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take spatial correlation into consideration. Convolutional
Autoencoders (CAEs) [21] are an important method of video
anomaly detection, which are able of capturing the 2D
image structure since the weights are shared among all loca-
tions in the input image. Furthermore, since Convolutional
long short-term memory (ConvLSTM) can model spatial-
temporal correlations by using convolutional layers instead
of fully connected layers, some researchers [15], [37] add
ConvLSTM layers to autoencoder, which better encodes the
change of appearance for normal data.

Variational Autoenocders (VAEs) are a special form of
autoencoder that models the relationship between two ran-
dom variables, latent variable z and visible variable x. A
prior for z is usually multivariate unit GaussianN (0, I). For
anomaly detection, authors [38] define the reconstruction
probability that is the average probability of the original
data generating from the distribution. Data points with
high reconstruction probability is classified as anomalies,
vice versa. Others like Denoising AutoEncoders (DAEs)
[22], Deep Belief Networks (DBNs) [39] and Robust Deep
Autoencoder (RDA) [40] have also been reported good
performance for anomaly detection.

2.2.2 Forecasting models
The forecasting model can also be used for anomaly detec-
tion. It aims to predict one or more continuous values, e.g.
forecasting the current output values xt for the past p values
[xt−p, ..., xt−2, xt−1]. RNN and LSTM is the standard model
for sequence prediction. In the work [41], [42], authors
perform anomaly detection by using RNN-based forecasting
models to predict values for the next time period and
minimize the mean squared error (MSE) between predicted
and future values. Recently, there have also been attempted
to perform anomaly detection using other feed-forward
networks. For instance, Shalyga et al. [43] develop Neural
Network (NN) based forecasting approach to early anomaly
detection. Kravchik and Shabtai [44] apply different variants
of convolutional and recurrent networks to perform fore-
casting model. And the results show that 1D convolutional
networks obtain the best accuracy for anomaly detection in
industrial control systems. In another work [45], Lai et al.
propose a forecasting model, which uses CNN and RNN,
namely LSTNet, to extract short-term local dependency
pattern and long-term pattern for multivariate time series,
and incorporates Linear SVR model in the LSTNet model.
Besides, other efforts have been performed in [46] using
GAN-based anomaly detection. The model adopts U-Net as
generator to predict next frame in video and leverages the
adversarial training to discriminate whether the prediction
is real or fake, thus abnormal events can be easily identified
by comparing the prediction and ground truth.

2.2.3 Composite models
Besides single model, composite model for unsupervised
anomaly detection has gained a lot attention recently. Zong
et al. [23] utilize a deep autoencoder to generate a low-
dimensional representation and reconstruction error, which
is further fed into a Gaussian Mixture Model to model
density distribution of multi-dimensional feature. However,
they cannot consider the spatial-temporal dependency for
multivariate time series data. Different from this work, the

Composite LSTM model [47] uses single encoder LSTM and
multiple decoder LSTMs to perform different tasks such as
reconstructing the input sequence and predicting the future
sequence. In [48], the authors use ConvLSTM model as a
unit within the composite LSTM model following a branch
for reconstruction and another for prediction. This type of
composite model is currently used to extract features from
video data for the tasks of action recognition. Similarly, au-
thors in [49] propose Spatial-Temporal AutoEncoder (STAE)
for video anomaly detection, which utilizes 3D convolu-
tional architecture to capture the spatial-temporal changes.
The architecture of the network is an encoder followed by
two branches of decoder for reconstructing past sequence
and predicting future sequence respectively.

As mentioned above, unsupervised anomaly detection
techniques have still many deficiencies. For traditional
anomaly detection, it is hard to learn representations of
spatial-temporal patterns in multi-sensor time-series sig-
nals. For a reconstruction model, a single task could make
the model suffer from the tendency to store information only
about the inputs that are memorized by the AE. And for the
forecasting model, this task could suffer from only storing
the last few values that are most important for predicting
the future [47], [48]. Hence, their performance will be limited
since model only learn trivial representations. For composite
model, these researchers design their models for different
purposes. Zong et al. [23] could solve problem that the
model is robust to noise and anomalies through perform-
ing density estimation in a low-dimensional space. Zhao
et al. [49] could consider the spatial-temporal dependency
through 3D convolutional reconstructing and forecasting
architectures. However, few studies could address these
issues simultaneously.

Different from these works, our research makes the fol-
lowing contributions: 1) The proposed model is designed to
characterize complex spatial-temporal dependencies, thus
discovering generalized pattern of multi-sensor data; 2)
Adding a Maximum Mean Discrepancy (MMD) penalty
could avoid the model generalizing so well for noisy
data and anomalies; 3) Combining Attention-based Bidi-
rectional LSTM (BiLSTM) and traditional Auto-regressive
linear model could boost the model’s performance from
different time scale; 4) The composite baseline model is
generated based on end-to-end training which means all
the components within the model are jointly trained with
compound objective function.

Besides, some learning algorithms based on time-series
data have been studied for decades. [50] propose Unsuper-
vised Salient Subsequence Learning to extract subsequence
as new representations of the time series data. Due to the
internally sequential relationship, many neural network-
based models can be applied to time series in an unsuper-
vised learning manner. For example, some 1D-CNN models
[51], [52] have been proposed to solve time series tasks with
a very simple structure and the sota performance. Moreover,
the multiple time series signal usually has some kinds of
co-relations, [53] propose a method to learn the relation
graph on multiple time series. Some anomaly detection
based on multiple time series applications are available for
wastewater treatment [54], for ICU [55], and for sensors [56].
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Fig. 1: The overview of the proposed CAE-M model.

3 THE PROPOSED METHOD

3.1 Notation
In a multi-sensor time series anomaly detection problem, we
are given a dataset generated by n sensors (n > 1). Without
loss of generality, we assume each sensor generates m sig-
nals (e.g., an accelerometer often generates 3-axis signals).
Denote S the signal set, we have N = |S| = nm signals in
total. For each signal xi ∈ S , xi ∈ Rti×1, where ti denotes
the length of signal xi. Note that even each sensor signal
may have different length, we are often interested in their
intersections, i.e., all sensors are having the same length T ,
i.e., X = (x1, · · · , xN )T ∈ RN×T denotes an input sample
containing all sensors.

Definition 1 (Unsupervised anomaly detection). It is non-
trivial to formally define an anomaly. In this paper, we are
interested in detecting anomalies in a classification problem.
Let Y = {1, 2, · · · ,K} be the classification label set, and K
the total number of classes, then the datasetD = (Xi, yi)

N
i=1.

Eventually, our goal is to detect whether an input sample
Xa belongs to one of the K predefined classes with a
high confidence. If not, then we call Xa an anomaly. Note
that in this paper, we are dealing with an unsupervised
anomaly detection problem, where the labels are unseen
during training, which is more obviously challenging.

3.2 Overview
There are some existing works [19], [21], [25] attempting
to resolve the unsupervised anomaly detection problem.
Unfortunately, they may face several critical challenges.
First, conventional anomaly detection techniques such as
PCA [17], k-means [18] and OCSVM [19] are unable to
capture the temporal dependencies appropriately because
they cannot deliver temporal memory states. Second, since
the normal samples might contain noise and anomalies,
using deep anomaly detection approaches such as standard
Autoencoders [20], [21] is likely to affect the generalization
capability. Third, the multi-stage approaches, i.e., feature

extraction and predictive model building are separated [25],
[26], can easily get stuck in local optima.

In this paper, we present a novel approach called Convo-
lutional Autoencoding Memory network (CAE-M) to tackle
the above challenges. Fig. 1 gives an overview of the pro-
posed method. In a nutshell, CAE-M is built upon a con-
volutional autoencoder, which is then fed into a predictive
network. Concretely, we encode the spatial information in
multi-sensor time-series signals into the low-dimensional
representation via Deep Convolutional Autoencoder (CAE).
In order to reduce the effect of noisy data, some existing
works have tried to add Memory module [24] or Gaussian
Mixture Model (GMM) [23]. In our proposed method, we
simplify these modules into penalty item, which called Max-
imum Mean Discrepancy (MMD) penalty. Adding a MMD
term can encourage the distribution of training data to
approximate the same distribution such as Gaussian distri-
bution, thus reducing the risk of overfitting caused by noise
and anomalies in training data [23]. And then we feed the
representation and reconstruction error to the subsequent
prediction network based on Bidirectional LSTM (Bi-LSTM)
with Attention mechanism and Auto-regressive model (AR)
which could predict future feature values by modeling the
temporal information. Through the composite model, the
spatial-temporal dependencies of multi-sensor time-series
signals can be captured. Finally, we propose a compound
objective function with weight coefficients to guide end-
to-end training. For normal data, the reconstructed value
generated by data coding is similar to the original input
sequence and the predicted value is similar to the future
value of time series, while the reconstructed value and the
predicted value generated by abnormal data change greatly.
Therefore, in inference process, we can detect anomalies pre-
cisely by computing the loss function in composite model.

3.3 Characterization Network

In the characterization network, we perform representative
learning by fusing multivariate signals in multiple sensors.
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The low-dimensional representation contains two compo-
nents: (1) the features which are abstracted from the multi-
variate signals; (2) the reconstruction error over the distance
metrics such as Euclidean distance and Minkowski distance.
To avoid the autoencoder generalizing so well for abnormal
inputs, optimization function combines reconstruction loss
by measuring how close the reconstructed input is to the
original input and the regularization term by measuring the
similarity between the two distributions (i.e., the distribu-
tion of low-dimensional features and Gaussian distribution).

3.3.1 Deep feature extraction
We employ a deep convolutional autoencoder to learn the
low-dimensional features. Specifically, given N time series
with length T , we pack into a matrix x ∈ RN×T with multi-
sensor time-series data. The matrix is then fed to deep con-
volutional autoencoder (CAE). The CAE model is composed
of two parts, an encoder and a decoder as in Eq. (1) and
Eq. (2). Assuming that x′ denotes the reconstruction of the
same shape as x, the model is to compute low-dimensional
representation zf , as follows:

zf = Encode(x), (1)

x′ = Decode(zf ). (2)

The encoder in Eq. (1) maps an input matrix x to a hid-
den representation zf by many convolutional and pooling
layers. Each convolutional layer will be followed by a max-
pooling layer to reduce the dimensions of the layers. A
max-pooling layer pools features by taking the maximum
value for each patch of the feature maps and produce the
output feature map with reduced size according to the size
of pooling kernel.

The decoder in Eq. (2) maps the hidden representation zf
back to the original input space as a reconstruction. In par-
ticular, a decoding operation needs to convert from a narrow
representation to a wide reconstructed matrix, therefore the
transposed convolution layers are used to increase the width
and height of the layers. They work almost exactly the same
as convolutional layers, but in reverse.

The difference between the original input vector x and
the reconstruction x′ is called the reconstruction error zr .
The error typically used in the autoencoder is Mean Squared
Error (MSE), which measures how close the reconstructed
input x′ is to the original input x, as follows in Eq. (3).

LMSE = ‖x− x′‖22, (3)

where ‖·‖22 is the l2-norm.

3.3.2 Handling noisy data
To reduce the influence of noisy data, we need to observe
the changes in low-dimensional features and the changes
of distribution over the samples in a more granular way,
thus distinguishing between normal and abnormal data
obviously.

Inspired by [23], in order to avoid the autoencoder gen-
eralizing so well for noisy data and abnormal data, we hope
to detect ”lurking” anomalies that reside in low-density
areas in the reduced low-dimensional space. Our proposed
method is conceptually similar to Gaussian Mixture Model

(GMM) as target distributions. The loss function is comple-
mented by MMD as a regularization term that encourages
the distribution of the low-dimensional representation to be
similar to a target distribution. It aims to make the distribu-
tion of noisy data close to the distribution of normal training
data, thereby reducing the risk of overfitting. Specifically,
Maximum Mean Discrepancy (MMD) [57] is a distance-
measure between the samples of the distributions. Given
the latent representation za = {z(1)

f , ..., z
(h)
f } ∈ Rh×d, where

d is a latent space (usually d < N × T ) and h denotes all of
the time steps at one iteration. For CAE with MMD penalty,
the Gaussian distribution Pz in reproduction kernel Hilbert
spaceH is chosen as the target distribution. We compute the
Kernel MMD as the follows:

LMMD(Z,Pz) = || 1
h

h∑
i=1

φ(z
(i)
f )− 1

h

h∑
i=1

φ(z(i))||2H. (4)

Here we have the distribution Z of the low-dimensional
representation z(i)

f and the target distribution z(i) ∼ Pz over
a set X . The MMD is defined by a feature map φ : X → H
where H is a reproducing kernel Hilbert space (RKHS).

During the training process, we could apply the kernel
trick to compute the MMD. And it turns out that many
kernels, including the Gaussian kernel, lead to the MMD
being zero if and only the distributions are identical. Letting
k(x, y) = 〈φ(x), φ(y)〉H, we yield an alternative characteri-
zation of the MMD as follows:

LMMD(Z,Pz) =|| 1

h2

∑
i 6=j

k(z
(i)
f , z

(j)
f ) +

1

h2

∑
i6=j

k(z(i), z(j))

− 2

h2

∑
i,j

k(z
(i)
f , z(j))||H.

(5)
Here the kernel is defined as k(u, v) = exp(− ||u−v||

2

2σ2 ).
The latent representation with Gaussian distribution Pz is
performed by sampling from Pz and approximating by
averaging the kernel k(·, ·) evaluated at all pairs of samples.

Note that we usually do batch training for neural net-
work training. It means that the model is trained using a
subsample of data at one iteration. In this work, we need to
compute the MMD over a set ofX at one iteration, where the
number ofX is equal to batchsize×timestep. That is, the la-
tent representation is denoted as za = {z(1)

f , ..., z
(l)
f } ∈ Rl×d,

where l = batchsize× h.

3.4 Memory Network
To simultaneously capture the spatial and temporal depen-
dencies, our proposed model is designed to characterize
complex spatial-temporal patterns by concurrently perform-
ing the reconstruction analysis and prediction analysis. Con-
sidering the importance of temporal component in time se-
ries, we propose non-linear prediction and linear prediction
to detect anomalies by comparing the future prediction and
the next value appearance in the feature space.

The characterization network generates feature repre-
sentations, which include reconstruction error and reduced
low-dimensional features learned by the CAE at h time
steps. Denote input features as zh for h = 1, ...,H :

zh = [zf , zr]h, h ∈ [1, H]. (6)
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Our goal is to predict the current value zh for the
past values [z1, z2, ..., zh−1]. The memory network combines
non-linear function based predictor and linear function
based predictor to tackle temporal dependency problem.

3.4.1 Non-linear prediction
Non-linear predictor function has different types such as Re-
current neural networks (RNNs), Long Short-Term Memory
(LSTM) [58] and Gated Recurrent Unit (GRU) [59]. Original
RNNs fall short of learning long-term dependencies. In this
work, we adopt a Bidirectional LSTM with attention mech-
anism [60] which could consider the whole/local context
while calculating the relevant hidden states. Specifically,
the Bidirectional LSTM (BiLSTM) runs the input in two
ways, one LSTM from past to future and one LSTM from
future to past. Different from unidirectional, the two hidden
states combined are able in any point in time to preserve
information from both past and future. A BiLSTM unit
consists of four components: input gate ih, forget gate fh,
output gate oh and cell activation vector ch. The hidden
state yh given input zh is computed as follows:

ih = σ(Wzizh +Wyiyh−1 +Wcich−1 + bi), (7)

fh = σ(Wzfzh +Wyfyh−1 +Wcfch−1 + bf ), (8)

oh = σ(Wzozh +Wyoyh−1 +Wcoch−1 + bo), (9)

c̃h = tanh(Wzczh +Wychh−1 +Wccch−1 + bc), (10)

ch = fh ⊗ ch−1 + ih ⊗ c̃h, (11)

yh = oh ⊗ tanh(ch), (12)

ŷh = [y1
h; y2

h], (13)

where ih, fh, oh, ch represent the value of i, f, o, c at the
moment h respectively, W and b denote the weight matrix
and bias vector, σ(·) and tanh(·) are activation function, the
operator ⊗ denotes element-wise multiplication, the current
cell state ch consists of two components, namely previous
memory ch−1 and modulated new memory c̃h, the output
ŷh combines the forward y1

h and backward y2
h pass outputs.

Note that the merge mode by which outputs of the forward
and backward are combined has different types, e.g. sum,
multiply, concatenate, average. In this work, we use the
mode “sum” to obtain the output ŷh.

Attention mechanism for processing sequential data that
could focus on the features of the keywords to reduce
the impact of non-key temporal context. Hence, we adopt
temporal attention mechanism to produce a weight vector
and merge raw features from each time step into a segment-
level feature vector, by multiplying the weight vector. The
work process of attention mechanism is following detailed.

Mh = tanh(Whŷh + bh), (14)

Eh = σ(WaMh + ba), (15)

Ah = softmax(Eh), (16)

Yh =
∑
h

Ah ∗ ŷh. (17)

Here W and b are represented as the weight and bias. A
weighted sum of the ŷh based on the weightAh is computed
as the context representation Yh. The context representation
is considered as the predicted value of zh for temporal
features [z1, z2, ..., zh−1].

3.4.2 Linear prediction
Autoregressive (AR) model is a regression model that uses
the dependencies between an observation and a number
if lagged observations. Non-linear Recurrent Networks are
theoretically more expressive and powerful than AR mod-
els. In fact, AR models also yield good results in forecasting
short term modeling. In specific real datasets, such infinite-
horizon memory isn’t always effective. Therefore, we in-
corporate AR model in parallel to the non-linear memory
network part.

The AR model is formulated as follows:

ẑh = c
h−1∑
i=1

wh−i +
h−1∑
i=1

wh−i ∗ zh−i, (18)

where w1, ..., wh−1 are the weights of the AR model, c
is a constant, ẑh represents the predicted value for past
temporal value [z1, z2, ..., zh−1]. We implement this model
using Dense layer of network to combine the weights and
data.

In the output layer, the prediction error is obtained by
computing the difference between the output of predictor
model and true value zh. The final prediction error inte-
grates the output of non-linear prediction model and linear
prediction model. The following equation is written as:

Lpredict =
∑

h∈Ωbatch

( ||Yh − zh||2F︸ ︷︷ ︸
Attention-based BiLSTM

+ ||ẑh − zh||2F︸ ︷︷ ︸
Autoregressive

),
(19)

where Ωbatch is a subsample of training data, || · ||F is the
Frobenius norm.

3.5 Joint optimization
As for multi-step approach, it can easily get stuck in local
optima, since models are trained separately. Therefore, we
propose an end-to-end hybrid model by minimizing com-
pound objective function.

The CAE-M objective has four components, MSE (re-
construction error) term, MMD (regularization) term, pre-
diction error (non-linear forecasting task) term and predic-
tion error (linear forecasting task) term. Given X samples
{x1, x2, ..., xD}, xi ∈ RN×T , the objective function is con-
structed as:

J(θ) = LMSE + λ1 · LMMD + λ2 · Llp + λ3 · Lnp

=
1

M

M∑
i=1

L(xi, x
′
i) + λ1LMMD(Z,PZ)

+
1

M

M∑
i=1

[λ2||Y (i)
h − z(i)

h ||
2
F + λ3||ẑ(i)

h − z
(i)
h ||

2
F ],

(20)

where M is batch size used for training, h is current time
step, λ1,λ2 and λ3 are the meta parameters controlling the
importance of the loss function.

Restating our goals more formally, we would like to:

• Minimize the reconstruction error in the characteri-
zation network, that is, minimize the error in recon-
structing x′ from x at all time step h. We need to
compute the average error at each time step of sam-
ple. The purpose is to obtain better low-dimensional
representation for multi-sensor data.
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• Minimize the MMD loss that encourages the distri-
bution Z of the low-dimensional representation to
be similar to a target distribution Pz . It can make
anomalies deviate from normal data in the reduced
dimensions.

• Minimize the prediction error by integrating non-
linear predictor and linear predictor. We split the
set {z1, z2, ..., zh} obtained by characterization net-
work into the current value zh and the past values
[z1, z2, ..., zh−1]. And then the predicted values Yh
and ẑh are obtained by minimizing prediction errors.
The purpose is to accurately express the information
of the next temporal slice using different predictor,
thus updating low-dimensional feature and recon-
struction error.

• λ1, λ2 and λ3 are the meta parameters in CAE-M.
In practice, λ1 = e − 04, λ2 = 0.5, and λ3 = 0.5
usually achieve desirable results. Here MMD is com-
plemented as a regularization term. The parameter
selection is performed in Section 4.8.1.

3.6 Inference

Given samples as training datasetX = {x1, x2, ..., xD}, xi ∈
RN×T , we are able to compute the corresponding decision
threshold (THR):

THR =
1

D

D∑
i=1

Err(xi) +

√√√√ 1

D

D∑
i=1

(Err(xi)− µ)2, (21)

where we denote Err(xi) as the sum of loss function for xi,
and µ is the average value of Err(xi) for i = 1, ..., D. The
setting is similar to the normal training distributionN (µ, σ)
following with 1 standard deviation σ of the mean µ.

In inference process, the decision rule is that if Err(xi) >
THR, the testing sample in a sequence can be predicted to
be “abnormal”, otherwise “normal”.

The complete training and inference procedure of CAE-
M is shown in Algorithm 1.

4 EXPERIMENTS

In this section, we conduct extensive experiments to evalu-
ate the performance of our proposed CAE-M approach for
anomaly detection on several real-world datasets.

4.1 Datasets

We adopt two large publicly-available datasets and a private
dataset: PAMAP2, CAP and Mental fatigue dataset. These
datasets are exploiting multi-sensor time series for activity
recognition, sleep state detection, and mental fatigue de-
tection, respectively. Therefore, they are ideal testbeds for
evaluating anomaly detection algorithms.

PAMAP2 [61] dataset is a mobile dataset with respect
to actions or activities from UCI repository, containing data
of 18 different physical activities performed by 9 subjects
wearing 3 inertial measurement units, e.g. accelerator, gyro-
scope and magnetometer. There are 18 activity categories in
total. For experiments, we treat these classes with relatively

Algorithm 1 Training and Inference procedure of CAE-M
Training process

Input: Normal Dataset X = {x1, x2, ..., xD}, time steps h,
batch size M and hyperparameters λ1, λ2, λ3.

Output: Anomaly decision threshold THR and model pa-
rameter w.

1: Transform each sample x ∈ RN×T into x ∈ Rh×N×t in
the time axis;

2: Randomly initialize parameter w;
3: while not converge do
4: Calculate low-dimensional representation zf and re-

construction error zr at each time step; // Eq. (1) (3)

5: Calculate MMD between za and Gaussian distribution
Pz ; // Eq. (5)

6: Combine zf and zr into zh = [zf , zr]h for each
sample; // Eq. (6)

7: Predict the current value zh for the past values
[z1, z2, ..., zh−1] by Attention-based BiLSTM and AR
model; // Eq. (7-18)

8: Update w by minimizing the compound objective
function; // Eq. (20)

9: end while
10: Calculate the decision threshold THR by the training

samples; // Eq.(21)
11: return Optimal w and THR.

Inference process
Input: Normal and Anomalous dataset X = {x1, x2, ...,

xD}, threshold THR, model parameter w, hyperparam-
eters λ1, λ2 and λ3.

Output: Label of all xi.
1: for all xi do
2: Calculate the loss Err(xi) = f(xi;w); //f(·) denotes

CAE-M
3: if Err(xi) > THR then
4: xi = “anomaly”;
5: else
6: xi = “normal”;
7: end if
8: end for
9: return Label of all xi.

smaller samples as the anomaly classes (including running,
ascending stairs, descending stairs and rope jumping), while
the rest categories are combined to form the normal classes.

CAP Sleep Database [62], which stands for the Cyclic
Alternating Pattern (CAP) database, is a clinical dataset
from PhysioNet repository. It is characterized by periodic
physiological signals occurring during wake, S1-S4 sleep
stages and REM sleep. The waveforms include at least 3
EEG channels, 2 EOG channels, EMG signal, respiration
signal and EKG signal. There are 16 healthy subjects and
92 patients in the database. The pathological recordings
include the patients diagnosed with bruxism, insomnia,
narcolepsy, nocturnal frontal lobe epilepsy, periodic leg
movements, REM behavior disorder and sleep-disordered
breathing. In this task, we extracted 7 valid channels of all
the channels like ROC-LOC, C4-P4, C4-A1, F4-C4, P4-O2,
ECG1-ECG2, EMG1-EMG2 etc. For detecting sleep apnea
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TABLE 1: The detailed statistics of three datasets

Dataset Domain Instances Dimensions Classes Permissions
PAMAP2 [61] Activity Recognition 1,140,000 27 18 Public

CAP [62] Sleep Stage Detection 921,700,000 21 8 Public
Mental Fatigue Dataset [2] Fatigue Detection 1,458,648 4 2 Private

events, we chose healthy subjects as normal class and the
patients with sleep-disordered breathing as anomaly class.

Mental Fatigue Dataset [2] is a real world health-care
dataset. Aiming to detect mental fatigue in the healthy
group, we collected the physiological signals (e.g., GSR,
HR, R-R intervals and skin temperature) using wearable
device. There are 6 healthy young subjects participated in
the mental fatigue experiments. In this task, non-fatigue
data samples are labeled as normal class and fatigue data
samples are labeled as anomaly class. Fatigue data accounts
for a fifth of the total.

The detailed information of the datasets is shown in
TABLE 1.

4.2 Baseline Methods
In order to extensively evaluate the performance of the
proposed CAE-M approach, we compare it with several
traditional and deep anomaly detection methods:

(1) KPCA (Kernel principal component analysis) [28],
which is a non-linear extension of PCA commonly used for
anomaly detection. (2) ABOD (Angle-based outlier detec-
tion) [63], which is a probabilistic model that well suited
for high dimensional data. (3) OCSVM (One-class support
vector machine) [64], which is the one-class learning method
that classifies new data as similar or different to the training
set. (4) HMM (Hidden Markov Model) [65] is a finite set
of states, each of which is associated with a probability
distribution. In a particular state an observation can be gen-
erated, according to the associated probability distribution.
(5) CNN-LSTM [66], which is a forecasting model composed
of convolutional and LSTM networks. It can obtain the fore-
cast by estimating the current data, and detect anomalies on
comparing the forecasting value with actuals. (6) LSTM-AE
(LSTM based autoencoder) [36], which is an unsupervised
detection technique used in time series that can induce a
representation by learning an approximation of the identity
function of data. (7) ConvLSTM-COMPOSITE [48], which
utilizes a composite structure that is able to encoder the
input, reconstruct it, and predict its near future. To sim-
plify the name, “ConvLSTM-COMP” denotes ConvLSTM-
COMPOSITE. We choose the “conditional” version to build
a single model called ConvLSTM-AE by removing the
forecasting decoder. (8) UODA (Unsupervised sequential
outlier detection with deep architecture) [67], which utilizes
autoencoders to capture the intrinsic difference between
normal and abnormal samples, and then integrates the
model to RNNs that perform fine-tuning to update the pa-
rameters in DAE. (9) MSCRED (Multi-scale convolutional
recurrent encoder-decoder) [15], which is a reconstruction-
based anomaly detection and diagnosis method.

4.3 Implementation details
For traditional anomaly detection, we scale the sequential
data into segments and extract the features from each

segment. In PAMAP2 dataset, multiple sensors are worn
on three different position (wrist, chest, ankle). Hence, we
extract 324 features including time and frequency domain
features. In CAP Sleep dataset, we first pass through the
Hanning window low pass filter for removing the high
frequency components of signals. And then we extract 91
features for EEG, EMG and ECG signals [68]–[70]; In Men-
tal Fatigue dataset, we preprocess physiological signals by
interpolation and filtering algorithm. Then we extract 23
features for Galvanic Skin Response (GSR), Heart Rate (HR),
R-R intervals and skin temperature sensors [2].

For Deep Anomaly Detection (DAD) method, we filter
multi-sensor signals and then pack these signals into matrix
as input to construct the deep model.

We reimplement these methods based on open-source
repositories1 or our own implementations. For KPCA, we
employ Gaussian kernel with a bandwidth of 600, 500,
0.5, respectively for PAMAP2, CAP, and Mental Fatigue
datasets. For ABOD, we use k nearest neighbors to ap-
proximate the complexity reduction. For an observation, the
variance of its weighted cosine scores to all neighbors could
be viewed as the abnormal score. For OCSVM, we adopt
PCA for OCSVM as a dimension reduction tool and employ
the Gaussian kernel with a bandwidth of 0.1. For HMM,
we build a Markov model after extracting features and
calculate the anomaly probability from the state sequence
generated by the model. For CNN-LSTM, we define a CNN-
LSTM model in Keras by first defining 2D convolutional
network as comprised of Conv2D and MaxPooling2D layers
ordered into a stack of the required depth, wrapping them
in a TimeDistributed layer and then defining the LSTM
and output layers. For LSTM-AE, we use single-layer LSTM
on both encoder and decoder in the task. For ConvLSTM-
COMPOSITE, we choose ”conditional” version and adapt
this technique to anomaly detection in multivariate time
series. Here we also build a single model called ConvLSTM-
AE by removing forecasting decoder. For UODA, we reim-
plement this algorithm by customizing the number of layers
and hyper-parameters. For MSCRED, we first construct
multi-scale matrices for multi-sensor data, and then fed it
into MSCRED model and evaluate the performance.

For our own CAE-M, we use library Hyperopt [71]
to select the best hyper-parameters (i.e., time window,
the number of neurons, learning rate, activation function,
optimization criteria and iterations). The characterization
network runs with Conv2D→Maxpooling→ Conv2D→
Maxpooling→ Conv2DTranspose→ Conv2DTranspose
→ Conv2DTranspose, i.e., Conv1-Conv5 with 32 kernels
of size 4 × 4, 64 kernels of size 4 × 4, 64 kernels of size
4 × 4, 32 kernels of size 4 × 4, 1 kernels of size 4 × 4,
and Maxpooling with size 2 × 2. We use Rectified Linear
Unit (ReLU) as the activation function of convolutional

1. https://pyod.readthedocs.io/en/stable/, https://github.com/
7fantasysz/MSCRED

https://pyod.readthedocs.io/en/stable/
https://github.com/7fantasysz/MSCRED
https://github.com/7fantasysz/MSCRED
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TABLE 2: The mean precision, recall and F1 score of baselines and our proposed method, * p-value = 0.0077.

Method
PAMAP2 CAP dataset Fatigue dataset

mPre mRec mF1 mPre mRec mF1 mPre mRec mF1

KPCA 0.7236 0.6579 0.6892 0.7603 0.5847 0.6611 0.5341 0.5014 0.5173

ABOD 0.8653 0.9022 0.8834 0.7867 0.6365 0.7037 0.6679 0.6145 0.6401

OCSVM 0.7600 0.7204 0.7397 0.9267 0.9259 0.9263 0.5605 0.5710 0.5290

HMM 0.6950 0.6553 0.6745 0.8238 0.8078 0.8157 0.6066 0.6076 0.6071

CNN-LSTM 0.6680 0.5392 0.5968 0.6159 0.5217 0.5649 0.5780 0.5042 0.5386

LSTM-AE 0.8619 0.7997 0.8296 0.7147 0.6253 0.6671 0.7140 0.6820 0.6870

UODA 0.8957 0.8513 0.8730 0.7557 0.5124 0.6107 0.8280 0.7770 0.8017

MSCRED 0.6997 0.7301 0.7146 0.6410 0.5784 0.6081 0.8016 0.6802 0.7359

ConvLSTM-AE 0.7359 0.7361 0.7360 0.8150 0.8194 0.8172 0.9010 0.9346 0.9175

ConvLSTM-COMP 0.8844 0.8842 0.8843 0.8367 0.8377 0.8372 0.9373 0.9316 0.9344

CAE-M (Ours) 0.9608 0.9670 0.9639 0.9939 0.9952 0.9961 0.9962 0.9959 0.9960

Improvement 7.64% 6.48% 7.96% 6.72% 6.93% 6.98% 5.89% 6.13% 6.16%

layers. The memory network contains non-linear prediction
and linear prediction, where the non-linear network runs
with BiLSTM(512) → Attention(h − 1) → Dropout(0.2)
→ FC(1000, linear), and the linear network runs with
FC(1000, linear). The CAE-M model is trained in an end-
to-end fashion using Keras [72]. The optimization algo-
rithm is Adam and the batch size is set as 32. And we set
parameters of compound objective function λ1 = e − 04,
λ2 = 0.5 and λ3 = 0.5. The time step h usually gives
desirable results as h = 5 or h = 10.

Note that in addition to the complete CAE-M approach,
we further evaluate its several variants as baselines to justify
the effectiveness of each component:

• CAE-Mw/oPre. The CAE-M model removes the linear
and non-linear prediction. That is, this variant only
adopts the characterization network with reconstruc-
tion loss and MMD loss. (i.e., λ1 = e − 04, λ2 =
0, λ3 = 0)

• CAE-Mw/oRec+MMD. The CAE-M model removes
the reconstruction error and MMD. Different from
CNN-LSTM model, the characterization network is
still performed as the deep convolutional autoen-
coder. We put the latent representation without re-
construction error into the memory network. (i.e.,
λ1 = 0, λ2 = 0.5, λ3 = 0.5)

• CAE-Mw/oATTENTION. The CAE-M model without
Attention component is implemented. (i.e., λ1 = e−
04, λ2 = 0.5, λ3 = 0.5)

• CAE-Mw/oAR. The CAE-M model without AR com-
ponent is implemented. (i.e., λ1 = e − 04, λ2 =
0.5, λ3 = 0)

• CAE-Mw/oMMD. The CAE-M model without MMD
component is implemented. (i.e., λ1 = 0, λ2 =
0.5, λ3 = 0.5)

Note that anomaly detection problems are often with
highly-imbalanced classes, hence accuracy is not suitable as
the evaluation metric. In order to thoroughly evaluate the
performance of our proposed method, we follow existing
works [15], [23], [73] to adopt the mean precision, recall, and

F1 score as the evaluation metrics. The mean precision means
the average precision of normal and abnormal class. The
same pattern goes for mean recall, F1 score.

In the experiments, the train-validation-test sets are split
by following existing works [15], [67]. Concretely speaking,
for each dataset, we split normal samples into training, vali-
dation, and test with the ratio of 5 : 1 : 4, where the training
and validation set only contain normal samples and have
no overlapping with testing set. The anomalous samples are
only used in the testing set. The model selection criterion,
i.e., hyperparameters, used for tuning is the validation error
on the validation set.

4.4 Results and Analysis

As shown in TABLE 2, we compare our proposed method
with traditional and deep anomaly detection methods using
the mean precision, recall and F1 score. We can see that
our method outperforms most of the existing methods,
which demonstrates the effectiveness of our method. From
TABLE 2, we can observe the following results.

For the PAMAP2 dataset, the CAE-M achieves the high-
est precision and recall compared by 10 popular meth-
ods. Traditional methods perform differently on PAMAP2
dataset since they are limited by the feature extrac-
tion and feature selection methods. In deep learning
method, CNN-LSTM has a lowest F1 score. This means
that more constraints such as data preprocessing method
and anomaly evaluation strategy need to be added for
prediction-based anomaly detection. For LSTM-AE, MS-
CRED and ConvLSTM-AE, they both are reconstruction-
based anomaly detection methods. Their performance is
limited by the “noisy data” problem, resulting in recon-
struction error for the abnormal input could be fit so well.
For UODA, it performs reasonably well on the PAMAP2
dataset, but it is not end-to-end training, which is needed
by pre-training denoising autoencoder (DAEs) and deep
recurrent networks (RNNs), and then fine-tuning the UODA
model composing of the DAE and RNN. For ConvLSTM-
COMPOSITE model, it performs better than other baseline
models. The model consists of a single encoder, two de-
coders of reconstruction branch and prediction branch. In
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TABLE 3: Detection performance in different sleep stages of baselines and our proposed method, *p-value = 0.0074.

Method
WAKE S1 S2 S3 S4 REM

mPre mRec mF1 mPre mRec mF1 mPre mRec mF1 mPre mRec mF1 mPre mRec mF1 mPre mRec mF1

KPCA 0.9162 0.8213 0.8662 0.8267 0.7598 0.7918 0.9257 0.9353 0.9305 0.9039 0.8689 0.8861 0.9402 0.9604 0.9502 0.9536 0.9614 0.9575

ABOD 0.9872 0.8686 0.9242 0.9347 0.5522 0.6942 0.9389 0.6550 0.7716 0.8489 0.6184 0.7155 0.6749 0.6448 0.6595 0.5915 0.5909 0.5912

OCSVM 0.9784 0.9492 0.9636 0.9655 0.9504 0.9579 0.9395 0.9448 0.9421 0.9714 0.9499 0.9605 0.8701 0.9488 0.9077 0.9784 0.9492 0.9636

HMM 0.8417 0.8406 0.8411 0.8790 0.8856 0.8823 0.8967 0.8887 0.8927 0.6880 0.6747 0.6813 0.7279 0.7286 0.7282 0.8024 0.8649 0.8325

LSTM-AE 0.6990 0.7178 0.7082 0.6517 0.6492 0.6504 0.7430 0.7331 0.7380 0.7689 0.7828 0.7758 0.7274 0.7569 0.7418 0.6590 0.6887 0.6735

UODA 0.6159 0.6326 0.6241 0.6762 0.6762 0.6762 0.7290 0.5223 0.6086 0.5716 0.5766 0.5741 0.6626 0.8498 0.6807 0.5626 0.6116 0.5861

ConvLSTM-
COMP 0.9889 0.9772 0.9830 0.9755 0.9850 0.9864 0.9250 0.9127 0.9188 0.9401 0.9041 0.9217 0.8647 0.8866 0.9023 0.9675 0.9949 0.9810

CAE-M 0.9974 0.9949 0.9961 0.9958 0.9950 ß0.9954 0.9950 0.9950 0.9950 0.9294 0.8842 0.9063 0.9842 0.9950 0.9895 0.9681 0.9950 0.9813

fact, since its efficiency is influenced by reconstruction error
and prediction error respectively, its performance could be
limited by one of encoder-decoder models.

For the CAP dataset, most of methods show a low F1
score. As CAP dataset contains different sleep stages of sub-
jects, some methods are limited by high complexity of data.
For OCSVM and HMM, they achieve better performance
because of dimensionality reduction from 36 dimensions
of PAMAP2 dataset to 7 dimensions. For MSCRED, due
to batch size =1 for the training model in the open source
code, the loss function couldn’t converge during training
model and the training speed is slow. Our proposed method
achieves about 7% improvement at F1 score, compared with
the existing methods.

For Fatigue dataset, it is difficult to label fatigue and
non-fatigue data manually. Therefore, it may be a lot of
noise or misclassification patterns in the data, so that most
of methods fail to solve this problem. For UODA, MSCRED
and ConvLSTM, they have ability to overcome noise and
misclassification of training data. Our proposed method also
solves this problem successfully and achieves at least 6%
improvement at F1 score.

Besides, in order to indicate significant differences from
our proposed method and other baselines, we use Wilcoxon
signed rank test [74] to analyze these results in TABLE 2. We
compute average p-value of CAE-M compared with other
baselines. A p-value = 0.0077 indicates that the performance
of our proposed method differs from other methods. This
p-value is also computed in TABLE 3.

4.5 Fine-grained Analysis

In addition to the anomaly detection of different classes on
each dataset, we conduct a fine-grained analysis to evaluate
the performance of each method within each class. Consid-
ering intra-class diversity, we conduct a group of experi-
ments to detect anomalies in different sleep stages. In fact,
these physiological signals in different sleep stages have
significant differences. We choose 4 traditional methods and
3 deep methods with good performance in global domain as
comparison methods. As shown in TABLE 3, we can observe
that our architecture is most robust across same experiment
settings. Several observations from these results are worth
highlighting. For ABOD, the testing performance is unstable
in local domain, which the highest F1 score is 0.92 in WAKE
and the lowest F1 score is 0.59 in REM. For KPCA and

TABLE 4: The evaluation results on LOSO cross validation
approach, including the best, the worst and the mean F1

score of 8 subjects.

Method Worst mF1 Best mF1 Mean mF1

ABOD 0.6093 0.8507 0.7706
ConvLSTM-COMP 0.7033 0.9224 0.8493

UODA 0.5938 0.9336 0.7984
CAE-M 0.8009 0.9433 0.8616

ConvLSTM-COMPOSITE, the testing performance in local
domain far exceeds the performance in global domain. This
demonstrates that the two model can achieve better per-
formance when intra-class data have similar distribution or
regular pattern. For other methods, the testing performance
is consistent in local and global domain. For our proposed
method, the best testing performance can be achieved no
matter in local domain or global domain. This study clearly
justifies the superior representational capacity of our archi-
tecture to solve intra-class diversity.

4.6 Effectiveness Evaluation
4.6.1 Leave One Subject Out
In this section, we measure the generalization ability of
models using Leave One Subject Out (LOSO). The fact is
that when training and testing datasets contain the same
subject, the model is likely to know more about the cur-
rent subject which may be biased towards a new one.
Therefore, LOSO could help to evaluate the generalization
ability. We choose the PAMAP2 dataset to conduct subject-
independent experiments which contain 8 subjects. As can
be seen in Fig. 2(a), we evaluate our proposed method and
three methods with relatively high F1 score. By examin-
ing the results, one can easily notice that deep learning-
based methods obtain better performance than traditional
methods. However, complex models such as deep neural
networks are prone to overfitting because of their flexibility
in memorizing the idiosyncratic patterns in the training set,
instead of generalizing to unseen data.

TABLE 4 shows the best, the worst and average per-
formance among 8 subjects. We can observe that UODA
and ConvLSTM-COMPOSITE model perform well in some
specific subjects, but they fail to reduce the effects of over-
fitting to each test subject, even drop to 0.70 and 0.59



11

(a) Leave One Subject Out Evaluation (b) Ablation Study

Fig. 2: Effectiveness evaluation using LOSO method and ablation study.

TABLE 5: The repeated measures analysis of variance on
LOSO cross validation approach of one subject.

Method mPre mRec mF1

ABOD 0.6240±0.000 0.5946±0.000 0.6090±0.000

ConvLSTM-COMP 0.8953±0.029 0.8081±0.038 0.8488±0.019

UODA 0.8155±0.063 0.7464±0.027 0.7782±0.031

CAE-M 0.9437±0.024 0.8191±0.003 0.8770±0.012

for some subjects. Compared to these methods, CAE-M
can generalize well on testing subjects it hasn’t appeared
before, which reach the average F1 score of 0.86. Besides,
we perform an analysis of variance on repeated measures
within subject 1 (corresponding to numbers in Fig. 2(a)). As
shown in TABLE 5, we observe that CAE-M remains a more
stable performance on repeated measurements. In summary,
the above demonstrates that our model can be motivated to
improve the generalization ability.

4.6.2 Ablation Study
The proposed CAE-M approach consists of several compo-
nents such as CAE, MMD, Attention mechanism, BiLSTM
and Auto-regressive. To demonstrate the effectiveness of
each component, we conduct ablation studies in this section.
The ablation study is shown in Fig. 2(b). These ID numbers
represent CAE-M without non-linear and linear prediction,
CAE-M without reconstruction error and MMD, CAE-M
without attention module, CAE-M without AR, CAE-M
without MMD and CAE-M, respectively. The experimental
results indicate that for the removal of different component
above, there is corresponding performance drop at F1 score.
We can observe that CAE-M model without prediction or
reconstruction error achieves a low F1 score relatively. This
demonstrates that our composite model is effective and
necessary for anomaly detection in multi-sensor time-series
data. Compared to original CAE-M model, removing the
AR component (in CAE-Mw/o AR) from the full model causes
significant performance drops on most of the datasets. This
shows the critical role of the AR component in general.
Moreover, attention and MMD components can also cause
big performance rises on all the datasets. More details are
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Fig. 3: Robustness to noisy data.

shown in TABLE 6. Here, these ID numbers are correspond-
ing to numbers in Fig. 2(b).

4.7 Robustness to Noisy Data

In real-world applications, the collection of multi-sensor
time-series data can be easily polluted with noise due to
changes in the environment or the data collection devices.
The noisy data bring critical challenges to the unsupervised
anomaly detection methods. In this section, we evaluate the
robustness of different methods to noisy data. We manu-
ally control the noisy data ratio in the training data. We
inject Gaussian noise (µ=0, σ=0.3) in a random selection
of samples with a ratio varying between 1% to 30%. We
compare the performance of three methods on PAMAP2
dataset: UODA, ConvLSTM-COMPOSITE, and CAE-M in
Fig. 3. These methods have good stability in the above
experiments. As the noise increases, the performance of all
methods decreases. For CAE-M, the F1 score, precision and
recall have no significant decline. Among them, our model
remains significantly superior to others, demonstrating its
robustness to noisy data.

4.8 Further Analysis

4.8.1 Parameter Sensitivity Analysis
In this section, we evaluate the parameter sensitivity of
CAE-M model. It is worth noting that CAE-M achieves
the best performance by adjusting weight coefficient of
compound objective function. We apply control variate re-
duction technique [75] to empirically evaluate the sensitivity
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TABLE 6: The mean precision, recall and F1 score from variants.

ID Method
PAMAP2 CAP dataset Fatigue dataset

mPre mRec mF1 mPre mRec mF1 mPre mRec mF1

1 CAE-Mw/o Pre 0.8103 0.8023 0.8063 0.8299 0.8101 0.8199 0.6005 0.6096 0.6050

2 CAE-Mw/o Rec+MMD 0.5693 0.5440 0.5563 0.8896 0.7784 0.8303 0.7050 0.6814 0.6930

3 CAE-Mw/o ATTENTION 0.9151 0.9276 0.9213 0.9251 0.9291 0.9271 0.9605 0.9551 0.9578

4 CAE-Mw/o AR 0.9060 0.8691 0.8872 0.9634 0.9381 0.9506 0.9046 0.9048 0.9047

5 CAE-Mw/o MMD 0.9437 0.9550 0.9493 0.9293 0.9213 0.9253 0.9407 0.9288 0.9347

6 CAE-M 0.9608 0.9670 0.9639 0.9939 0.9952 0.9961 0.9962 0.9959 0.9960
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Fig. 4: Parameter sensitivity analysis of the proposed
CAE-M approach.

of parameter λ1, λ2, λ3 with a wide range. The results are
shown in Fig. 4. As the value of MMD loss is greater than
others, we select its weight coefficient within e-04 ∼ e-07
and other weight coefficients within [0.1, 0.5, 1, 5, 10, 50]. We
adjust one of λ while fixing the other respective λ to keep
the optimal value (λ1 = e − 04, λ2 = 0.5, and λ3 = 0.5).
When weight coefficient is increased, we observe that F1
score tends to decline. The optimal parameter is λ1 = e−04,
λ2 = 0.5, and λ3 = 0.5. It can be seen that the performance
of CAE-M stays robust within a wide range of parameter
choice.
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Fig. 5: Convergence analysis of the proposed CAE-M
approach on different datasets.

4.8.2 Convergence Analysis
Since CAE-M involves several components, it is natural to
ask whether and how quickly it can converge. In this section,
we analyze the convergence to answer this question. We
extensively show the results of each component on three
datasets in Fig. 5. These results demonstrate that even if the
proposed CAE-M approach involves several components,
it could reach a steady performance within fewer than 40
iterations. Therefore, in real applications, CAE-M can be
applied more easily with a fast and steady convergence
performance.

5 CONCLUSION AND FUTURE WORK

In this paper, we introduced a Deep Convolutional Au-
toencoding Memory network named CAE-M to detect
anomalies. The CAE-M model uses a composite framework
to model generalized pattern of normal data by captur-
ing spatial-temporal correlation in multi-sensor time-series
data. We first build Deep Convolutional Autoencoder with
a Maximum Mean Discrepancy (MMD) penalty to charac-
terize multi-sensor time-series signals and reduce the risk
of overfitting caused by noise and anomalies in training
data. To better represent temporal dependency of sequential
data, we use non-linear Bidirectional LSTM with Attention
and linear Auto-regressive model for prediction. Extensive
empirical studies on HAR and HC datasets demonstrate
that CAE-M performs better than other baseline methods.

In the future work, we will focus on the point-based
fine-grained anomaly detection approach and further im-
prove our method for multi-sensor data by designing proper
sparse operations.
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