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ABSTRACT

This paper exploits ubiquitous desktop interaction data as an input
source for generating virtual reality (VR) interaction data, which
can benefit tasks like user behavior analysis and experience enhance-
ment. Time-varying stroke gestures are selected as the primary focus
because of their prevalence across various applications and their di-
verse patterns. The commonalities (e.g., features like velocity and
curvature) between desktop and VR strokes allow the generation
of additional dimensions (e.g., z vectors) in VR strokes. However,
distribution shifts exist between different interaction environments
(i.e., desktop vs.VR), and within the same interaction environment
for different strokes by various users, making it challenging to build
models capable of generalizing to unseen distributions. To address
the challenges, we formulate the problem of generating VR strokes
from desktop strokes as a conditional time series generation prob-
lem, aiming to learn representations that are capable of handling
out-of-distribution data. We propose a novel architecture based
on conditional generative adversarial networks, with the generator
encompassing three steps: discretizing the output space, characteriz-
ing latent distributions, and learning conditional domain-invariant
representations. We evaluate the effectiveness of our methods by
comparing them with state-of-the-art time series generation models
and conducting ablation studies. We further illustrate the applicabil-
ity of the enriched VR datasets through two applications: VR stroke
classification and stroke prediction.

Index Terms: Human-centered computing—Virtual reality

1 INTRODUCTION

Virtual reality (VR) interaction data, generated by users when using
VR applications, play an important role in understanding user behav-
iors [8, 36] and experiences [17, 57]. The data can be analyzed and
utilized from different perspectives to serve various stakeholders and
purposes. For example, hand movement data can enable designers
to offer stroke gestures as intuitive user interfaces in VR [32, 35];
gaze data associated with viewers’ reactions to 360-degree videos
can help storytellers refine their VR narratives [36, 38, 52]; em-
bodiment interaction can help researchers understand space usage
patterns [17]. However, the collection of VR interaction data faces
various difficulties, such as a small user base due to limited VR
device adoption [19], frequent deployment failures owing to device
incompatibility [25], and inconvenient communication during tu-
torial sessions [7]. Consequently, current VR interaction datasets
are primarily derived from a small number of participants in lab
settings, resulting in limited sample sizes and diversity [19] and
thus impeding the full exploitation of interaction data for various
downstream applications [27, 37, 39, 48].
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Figure 1: (A) Easy-to-collect desktop strokes may supplement VR
stroke collection. (B) Desktop strokes add diversity to the VR stroke
dataset with different shapes drawn by different users. (C) VR and
desktops have commonalities, including features related to the XY
plane such as velocity and curvature. (D) VR strokes present addi-
tional dimensions, such as z vectors.

To alleviate the difficulties in acquiring sufficient and diverse
data, researchers have investigated various techniques [9, 29] to
generate VR interaction data. For instance, deep learning models
have been employed to generate viewers’ scan paths for 360-degree
images [29] and synthesize privacy-preserving eye-tracking VR
datasets [9]. Nevertheless, these approaches still rely on existing VR
interaction data as input and thus the diversity of the synthesized
data is restricted by the input data’s inherent diversity.

To address the above limitations, this study investigates whether
and how interaction data collected from desktop environments can
be used as an alternative source of input to enhance the quantity
and diversity of synthesized VR interaction data. Desktop interac-
tion data are considered because they can be collected from crowd-
sourcing platforms that are accessible to numerous users with easy
setup. We choose stroke gestures as the primary experimental subject
due to their widespread use across many VR and desktop applica-
tions [5, 20], compatibility with multiple input devices (e.g., hands,
stylus pens, and mice) [8], and a wide range of geometrical vari-
ations [4, 8]. As shown in Fig. 1, compared to desktop strokes,
VR strokes exhibit additional dimensions (e.g., z vectors) due to
their 3D nature and the lack of physical surfaces [5]. Fortunately,
VR and desktop strokes also share commonalities (e.g., features
such as speed and curvature on the xy plane), allowing for potential
transferability from desktop to VR. Besides, the rich diversity of
desktop datasets (e.g., featuring various stroke shapes) can enhance
the diversity within synthesized VR datasets.

To explore the research question of how desktop strokes can en-
rich VR stroke datasets while preserving the original characteristics,
we first conduct preliminary studies by analyzing VR and desktop
stroke datasets regarding the commonalities and additional dimen-
sions. As to commonalities, we find that distribution shifts not only
exist between desktop and VR stroke datasets but also intrinsically
within each dataset (see Fig. 2). This poses the first challenge of
ensuring that models trained on VR stroke datasets can generalize
to desktop data that comes from unseen distributions (i.e., out-of-
distribution). As to additional dimensions, we find that z vectors
continuously spread out the output space (see Fig. 3), leading to the
second challenge of capturing relationships between commonalities
and additional dimensions from small real VR datasets.
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We propose a two-stage method to enrich VR stroke datasets from
desktop strokes and address the above two challenges. As shown
in Fig. 4, the first stage utilizes the real VR datasets and learns the
relationships between the commonalities and additional dimensions.
The second stage then leverages the commonalities provided by
desktop datasets as input. By applying the relationships learned
in the first stage, the second stage generates the absent additional
dimensions and thus synthesizes more diverse and larger VR stroke
datasets. To tackle the first challenge, we regard strokes as time se-
ries data, because they exhibit temporal characteristics (e.g., timing,
duration, and order of actions). Then, we formulate the problem of
generating VR strokes based on desktop strokes as a conditional time
series generation problem under out-of-distribution circumstances.
Specifically, when training generative models on VR datasets, we
characterize the latent domains that exist inside VR datasets and then
learn domain-invariant representations to mitigate the distribution
shifts among different latent domains. This enables generalization
when confronting unseen distributions in desktop datasets. For the
second challenge, we discretize the output space by performing clus-
tering algorithms on additional dimensions (i.e., z vectors), reducing
the burden of learning the relationships between the commonalities
and additional dimensions. Bringing them all together, we propose
a novel architecture based on conditional generative adversarial net-
works, whose generator wraps the above designs and consists of
three steps (Fig. 5): discretizing the output space, characterizing
latent domains, and learning conditional domain-invariant represen-
tations. To evaluate the effectiveness and usefulness of our methods,
we first conduct quantitative comparisons with several state-of-the-
art time series generative models [11, 31, 54] and perform ablation
studies. Then, we create two applications that showcase the benefits
of enriched VR datasets in classifying and predicting VR strokes.

In summary, our main contributions are twofold. First, to the
best of our knowledge, we are the first to explore generating VR
stroke gesture data from desktop stroke gesture data as an alter-
native input source that is out-of-distribution. We propose a time
series generative network with novel designs of output space dis-
cretization and conditional domain-invariant representation learn-
ing. Second, we develop two applications that show the effec-
tiveness and usefulness of the datasets enriched by our methods
and demonstrate the potential opportunities opened by our meth-
ods. Our code and datasets are available at https://github.com/
yuanlinping/VRStrokeOOD.

2 RELATED WORK

2.1 Methods for Obtaining VR Interaction Datasets
There are mainly two ways to obtain VR interaction datasets. The
first way is to collect from real users [22,23,36,52]. Various sensors
(e.g., controllers [8, 40, 55], motion trackers [23], and eye track-
ers [36, 52]) are attached to users, monitoring and recording their
actions while they interact with virtual environments. These meth-
ods provide realistic data, but they can be time-consuming due to
small user bases [19], deployment failures [12, 25], and tedious
tutorials [7], leading to limited quantity and diversity.

The second way is to synthesize VR interaction data based on col-
lected VR datasets [9,29]. For example, Martin et al. [29] proposed a
model to generate scan paths for 360-degree images with a spherical
version of dynamic-time warping as loss functions. Brendan et al. [9]
utilized conditional variational autoencoders to synthesize privacy-
preserving eye-tracking VR datasets. Although these methods are
efficient and scalable, they may not fully capture the variety of user
interactions [53], because they still depend on the available VR
datasets that are collected from small user groups.

In this study, we propose to use desktop interaction data, which
can be collected from larger user groups with easier setup, as an
alternative input source for generative models to increase the quantity
and diversity of synthesized VR interaction datasets.

2.2 Stroke Gestures in VR and Desktop Environments
Stroke gestures refer to continuous hand or finger movements that
convey user input through symbols or shapes drawn on a surface or in
the air [20]. They play a critical role in many applications, including
painting [47, 50], 3D modeling [27], and data analysis [24, 39].
This is because they offer users a natural and intuitive means of
interaction by closely mimicking real-life actions and movements,
enabling users to communicate their intuition and intention with
systems with less learning curve and cognition load [21].

Researchers have studied stroke gestures from different perspec-
tives to boost their potential. There are several shared topics between
VR and desktop environments. For example, various algorithms are
proposed to classify desktop (e.g., $P+ [42]) and VR (e.g., 3D Ru-
bine [32]) stroke gestures. Studies have also examined how different
input devices affect the drawing precision and speed to inform sup-
port for precise desktop [20,41] and VR [8] stroke drawing. Besides,
some studies have investigated issues unique to VR environments,
such as reducing fatigue of mid-air drawing and improving draw
performances by providing support [5, 51]. Conversely, research in
desktop environments has delved into topics like stroke synthesis,
such as how to enrich strokes produced by visually impaired people
based on strokes produced by normal vision people [21].

However, no research has focused on synthesizing VR stroke
gestures from desktop stroke gestures. It remains unknown whether
and how the commonalities can serve as a bridge toward generating
the additional dimensions. We propose a novel time series generative
model that uses out-of-distribution techniques to solve the problem.

2.3 Out-of-distribution Generalization
Out-of-distribution (OOD) generalization [45] refers to the scenario
that we have one or multiple training domains available and we want
to learn a predictive function for unseen distributions. The key of
OOD generation is to learn domain-invariant features, which can be
achieved via different types of approaches [45]. Of all existing work
in OOD generalization, two types are closely related to our work.

The first type is data augmentation or generation, which aims to
get new training data by either harnessing existing augmentation
techniques [46] or generating new samples using generative algo-
rithms [44]. These approaches inspire us to view the enrichment of
VR stroke datasets as a generative problem. However, they mostly
focus on images and only consider spatial information, neglecting
time series data where time relations play a critical role.

The second type is OOD generalization approaches for time series.
One key difference between general OOD and time series OOD
algorithms is that the domain labels are usually not given as a prior
in time series data [10, 26]. However, the temporal covariate shifts
exist in the time series data, which are often non-stationary and have
changing statistical values. AdaRNN [10] and DIVERSIFY [26] are
two recent OOD models for time series prediction and classification
problems from a distribution perspective. Their core idea is to first
split the entire time series into several domains by maximizing the
distribution differences among the resulting domains, and then learn
importance vectors to align hidden states of trained RNNs [10] or
use a min-max adversarial game [26] to achieve domain distribution
characterization and domain-invariant representation learning.

Our work is inspired by AdaRNN and DIVERSIFY for OOD
generalization. However, their detailed network architectures cannot
be simply applied to our problem because they focus on prediction
and classification but generating VR stroke gestures is a generative
problem. We propose a novel network architecture based on GANs,
whose generator tailors the core idea of DIVERSIFY to generate
VR stroke gestures with a novel label space discretization method
and conditional invariant representation learning.
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Figure 2: The KDE and t-SNE analyses on commonalities reveal
distribution shifts between VR and desktop datasets, and within each.

3 PRELIMINARY STUDIES

To inform the algorithm design, we first conduct preliminary studies
by analyzing VR and desktop stroke datasets.

3.1 Data Preparation
To prepare data for analysis, we first preprocess raw stroke data, and
then extract features based on preprocessed data. Later, when we
train various generative models (Sec. 6 and Sec. 7), we also perform
the same preprocessing and feature extraction to obtain input data.

Datasets. The preliminary studies use two datasets: (1) 3DMad-
LabSD VR stroke dataset [16], which consists of 40 stroke types
drawn by 10 users, and (2) $1 desktop stroke dataset [49], which
consists of 16 stroke types drawn by 10 users in slow, medium, and
fast speeds. Each stroke in the 3DMadLabSD dataset is a list of
(x,y,z, t) points, and each stroke in the $1 dataset is a list of (x,y, t)
points, where x, y, z are coordinates and t represents a timestamp.

Data Preprocessing. With the raw datasets, we first perform
data preprocessing. Since the number of points in each stroke varies
in the raw data, we perform temporal resampling to standardize
each stroke to 64 points. For each stroke, we divide its original
time range into equal intervals and obtain a new list of points using
cubic interpolation. Then, for each stroke, we normalize its x and y
coordinates to [0,1] and translate its z coordinate to start at 0.

Feature Extraction. With the preprocessed data, we perform
feature extraction. Previous research [4, 41, 43] has characterized a
stroke with various features, which can be categorized into two types:
1) geometric features that describe the appearance of a stroke, such as
shape, size, and curvature, and 2) kinematic features that describe the
movement during stroke production, such as speed and acceleration.
Following their practices, we extract 15 features regarding the XY
plane for each stroke in both 3DMadLabSD [16] and $1 dataset [49].
Specifically, we project VR strokes into the (x,y) plane, making
the projected data comparable across the extracted features with
the desktop data. A complete description and calculation of the
extracted features can be found in the supplementary materials.

3.2 Data Analysis
After feature extraction, each desktop and VR stroke is described
with a list of points, and each point is associated with (x,y) coordi-
nates and features related to the XY plane. We regard the (x,y) and
these features as commonalities between desktop and VR strokes.
Each point in a VR stroke has a z coordinate, which is regarded
as the additional dimension. Data analysis is performed on the
commonalities and additional dimensions, respectively.

Data Analysis on Commonalities. We first group the strokes in
the VR and desktop datasets based on their shapes (e.g., rectangles
and circles) and then perform t-SNE and KDE analysis to investigate
their distributions. Figure 2-A shows the comparison between VR
rectangles, VR circles, desktop rectangles, and desktop circles. We

Figure 3: The additional z vectors of VR strokes spread out the entire
output space and overlap between different stroke types. Each line
represents a z vector of 64 dimensions.

can observe that VR and desktop strokes are well-separated in the
t-SNE plot and their KDE histograms are different, indicating that
distribution shifts exist between VR and desktop datasets. Even
more intriguing is the observation that VR rectangles and VR circles
are distinctively separated in the t-SNE plot and exhibit different
KDE histograms. This indicates unexpected distribution shifts even
within the VR datasets. A similar pattern also emerges for desktop
rectangles and desktop circles, indicating distribution shifts within
the desktop datasets. We further perform t-SNE and KDE anal-
ysis after grouping desktop strokes based on the drawing speeds.
VR strokes are not grouped because users were not asked to draw
at different speeds during collection [16]. Figure 2-B shows the
comparison between VR circles and desktop circles drawn at slow,
medium, and fast speeds. Again, we can observe that VR circles
and desktop circles are well-separated, indicating the distribution
shifts between VR and desktop data. For desktop circles at different
speeds, their KDE histograms are different, indicating that drawing
speeds can lead to distribution shifts within desktop data.

Data Analysis on Additional Dimensions. Figure 3 plots z
vectors of two VR stroke types in the 3DMadLabSD dataset [16],
with each line a z vector. When comparing the z vectors between
VR circles and VR arrows, we find that the z vectors of different
stroke types exhibit overlapping patterns that closely mirror each
other. This suggests shared characteristics in the manner users draw
these strokes. When observing each stroke type individually, we find
that the z vectors also exhibit considerable variation. This variability
could stem from the depth inaccuracies or deviations when drawing
in VR, where users tend to draw on a curved surface despite their
efforts to restrict their hand movements on an imaginary flat surface,
as noted in previous research [5]. We also observe that some z
vectors depict an initial high value tapering off towards the end,
while others show the opposite trend or even peak in the middle.
This might be because the starting point and moving arcs of users’
arms [5] and wrists [34] influence the deviations. For example,
when drawing a circle, users might start at the top and then reach the
bottom, or start at another point with different moving arcs. Besides,
we notice a greater variation in the z vectors of VR arrows compared
to VR circles. This is likely attributed to the sharp turns in drawing
arrows, which involve more complex hand movements and thus
lead to more depth deviations. This observed variability indicates a
continuous distribution of z vectors within the output space.

3.3 Findings
We summarize the findings as follows, which inform us of the chal-
lenges we need to address when designing effective algorithms for
generating VR stroke gestures based on desktop stroke gestures.

• For common parts between VR and desktop datasets, distribution
shifts exist not only between VR and desktop datasets but also
within VR datasets or desktop datasets. The distribution shifts
can be caused by multiple factors, such as input environments
(i.e., VR or desktop), stroke shapes, drawing speeds, and other
unknown reasons. The distribution shifts necessitate that models
trained on VR strokes possess robust generalization capabilities
to perform well on out-of-distribution desktop data.
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• For additional dimensions of VR datasets, the z vectors exhibit
great variability. They take up the output space continuously and
overlap across different stroke types, making it hard for models
to capture relationships between commonalities and additional
dimensions from small real VR datasets.

4 PROBLEM FORMULATION

Commonalities and Additional Dimensions. Suppose two separate
stroke gesture datasets have been collected from VR and desktop
environments, respectively. The VR dataset is denoted by V =
{V1,V2, . . . ,Vn} and the desktop dataset by W = {W1,W2, . . . ,Wm},
where m � n. Each stroke gesture Vi ∈ R

p×q, where p denotes
the number of points in the stroke and q encompasses the features
of each point. Specifically, these features include the x,y,z coordi-
nates, features related to the XY plane, denoted as f xy, and features
associated with the Z-axis, denoted as f z. Similarly, a stroke ges-
ture Wj ∈ R

p×r. Here, p represents the number of points, and r
represents features consisting of the x,y coordinates and the XY
plane features f xy. Thus, the commonalities between Vi and Wj are
{x,y, f xy}, and VR additional dimensions are {z, f z}.

Latent Domains in V and W . The preliminary studies show that
the values of {x,y, f xy} in both V and W may draw from different
distributions (Fig. 2). Since the distribution shifts are caused by
various known and unknown factors, such as different input devices,
shapes of stroke gestures, and drawing speeds, it is improper to
simply divide them into several domains based on any single fac-
tor [26]. Instead, we propose to treat them as compositions of several
(unknown) latent distributions to model their relationships.

Problem Formulation. Based on the above descriptions, we
formulate our problem of generating an enriched VR stroke dataset
Vnew based on the real VR dataset V and desktop dataset W as a
conditional generation task in the out-of-distribution settings [45].

Specifically, suppose that V consists of k latent domains Dtrain =
{Di|i = 1, . . . ,k}. Di = {Ai,Ci,Pi(a,c)} describes the i-th domain,
where A is the value space of additional dimensions (i.e., {z, f z})
that will be generated, C is the value space of commonalities (i.e.,
{x,y, f xy}) on which generation is conditioned, and P(a,c) is the
joint probability distribution. The joint distributions between each
pair of latent domains differ: Pi �= Pj for 1 ≤ i �= j ≤ k.

A conditional generative model G : C ×Z → A, where Z rep-
resents the latent space, can be built to generate instance a ∈ A
conditioned on c ∈ C, namely generating values of additional dimen-
sions based on values of common parts. In our problem, we aim to
learn a generalized G using the k training domains from the real VR
dataset V that can generate values for additional dimensions based
on desktop dataset W , which is not accessible during training and
whose common parts are drawn from unseen distributions.

The generated values of additional dimensions should preserve
the characteristics shown in the real VR dataset V to reflect common
or general habits of how users produce VR strokes. Mathematically,
given a specific c in C, the marginal distribution of the generated
values based on c, denoted as PG|c, should be closely aligned with
the marginal distribution of the values in V corresponding to that
same c, denoted as PV |c. The objective can be formulated as:

min
G

D(PG|c,PV |c), (1)

where D(·, ·) represents a suitable distance measure.

5 PROPOSED METHODS

5.1 Method Overview
To increase the diversity of generated VR stroke gestures, we propose
to take desktop stroke gestures as an alternative input. To achieve
this, we regard stroke gestures as time series data and propose a
conditional time series generative model. As illustrated in Fig. 4,
our method consists of two stages:

Figure 4: Our two-stage method learns and applies the relationships
between the commonalities and additional dimensions.

Stage 1: learn relationships by training on VR stroke datasets.
We propose a novel network architecture based on conditional gen-
erative adversarial networks (cGAN) [18]. Specifically, the network
consists of a generator G and a discriminator D. Given a VR stroke
gesture in the real VR stroke dataset, the generator incorporates its
[x,y, f xy] features (i.e., commonalities) as a conditional input, and
generates the z vector (i.e., additional dimensions) conditioning on
[x,y, f xy]. After concatenating the conditional input [x,y, f xy] with
the generated z vector, we get a complete generated VR stroke. The
discriminator then judges whether the generated stroke conforms to
the distribution of real VR strokes (Eq. 1).

Stage 2: apply relationships to desktop stroke datasets. After
training a cGAN model on the real VR stroke dataset, the second
stage is to use the trained generator G and desktop strokes to generate
more VR strokes. Specifically, the trained generator G generates z
vectors conditioning on [x,y, f xy] provided by a desktop stroke and
preserves the characteristics of the real VR datasets by applying the
learned relationships. Since desktop strokes can offer more diverse
shapes and geometry variants, the generated VR stroke datasets will
also contain the shapes and geometry variants that are not presented
in the real VR stroke datasets.

Although some cGANs specific for time series [11, 31, 54] could
be candidates for the first stage, they may be insufficient to ad-
dress distribution shifts and the continuous output space reported
in Sec. 3.3. Therefore, we further propose our solution as a con-
ditional time series generative model under out-of-distribution cir-
cumstances, and modify the generator in cGAN [18] to enable the
generator to handle the distribution shift and continuous output space
issues. Next, we will elaborate on our generator design.

5.2 Conditional Domain-Invariant Generator
To make our generator generalizable to unseen distributions, we
borrow and adapt the core ideas of DIVERSIFY [26].

DIVERSIFY [26] inspects time series classification from a dis-
tribution perspective. Specifically, since time series data are often
non-stationary, DIVERSIFY [26] argues that a time series does not
follow one fixed distribution, but has several latent distributions,
forming several latent domains. However, time series data often
do not have proper domain labels, necessitating to characterization
of the latent distributions and domains with advanced algorithms.
To classify time series that belong to several latent domains while
domain labels are missing, DIVERSIFY [26] proposes three steps:
(1) fine-grained feature update that utilizes pseudo domain-class
labels to extract features, (2) latent distribution characterization that
divides the whole time series dataset into several latent domains, and
(3) domain-invariant representation learning that enables generaliza-
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Figure 5: The proposed generator (G in Fig. 4) has three steps:
discretizing the output space, characterizing latent domains, and
learning conditional domain-invariant representations.

tion across different domains. In the three steps, DIVERSIFY [26]
maximizes the distribution differences among the latent domains and
learns domain-invariant representations that can bridge the maximal
distribution gaps to achieve the best generalizability.

As stated in Sec. 3.3 and Sec. 4, both VR and desktop stroke
datasets have distribution shifts, indicating the existence of latent do-
mains. Moreover, since distribution shifts can be caused by several
factors, such as shapes and drawing speeds, it is hard to simply label
the domains with a single factor, and thus we borrow the second
step of DIVERSIFY to characterize the latent domains. However,
DIVERSIFY is for time series classification with a limited set of
possible outputs (i.e., class labels) but our problem is a generative
problem with a continuous output space. Thus, we modify the first
and third steps of DIVERSIFY and propose a conditional domain-
invariant generator with three steps (Fig. 5): (1) discretizing the
output space to characterize possible z vectors, (2) characterizing
latent distributions to divide the real VR datasets to several latent
domains, and (3) learning conditional domain-invariant represen-
tations that are generalizable to generate z vectors conditioning on
[x,y, f xy] that come from unseen distributions.

5.2.1 Discretizing Output Space
As reported in Sec. 3.3, z vectors can spread out the entire output
space, and the correspondence between features in common parts
(i.e., [x,y, f xy]) and additional dimensions (i.e., z vectors) intertwine
together, making it hard for generators to capture their relationships.
To reduce the difficulties, we first apply the k-nearest neighbor
clustering algorithm to cluster the z vectors of all strokes in the real
VR dataset. Figure 6 shows an example of the ten clusters obtained
from the 3DMadLabSD dataset [16]. Then, we utilize the resulting
clusters to discretize the output space by treating them as ten classes
and assigning each z vector a corresponding class label lz.

VR strokes with the same class label may come from different
latent domains. We train a feature extractor, a bottleneck, and a
classifier by utilizing pseudo domain-class labels [26] (Fig. 5-Step
1). Specifically, assuming that there are K latent domains and J
classes/clusters, resulting in a total of K×J domain-class labels. The
pseudo domain-class label s ∈ {1,2, · · · ,K × J} for each stroke will
be obtained and updated in each training iteration at the second step
later. This step takes a VR stroke’s commonalities c (i.e., {x,y, f z})
as input and outputs a domain-class label. The process is supervised
learning and the loss function uses cross-entropy �:

Lsuper = E(c,a)∼Ptr�(s′,s), (2)

s′ =C(1)(B(1)(F(1)(c))),

where C(1), B(1), and F(1) represent the classifier, bottleneck, and
feature extractor at the first step, respectively. In the following, we
use the superscript to denote the order of steps.

Figure 6: Examples of discretizing output space by clustering z vectors
of 3DMadLabSD dataset [16].

5.2.2 Characterizing Latent Distributions
Following the practices in DIVERSIFY [26], the second step is to
characterize the latent distributions and obtain latent domain labels
for each VR stroke, rather than simply dividing the strokes into
domains by any single factor (e.g., shapes or speeds). First, we

use a class discriminator Adv(2) to classify classes (i.e., different z
vector clusters) and learn class-invariant features fcls. We also use a

domain classifier to obtain temporary domain labels l
′
d (Fig. 5-Step

2). We iteratively perform k-means clustering algorithms on the
class-invariant features to obtain K latent domains. The centroids of
the domains are computed as:

μ̃k =
∑ci∈Ctr δkl

′
dfcls

∑ci∈Ctr δkl ′d
(3)

l
′
d = (C(2)(B(2)(F(2)(ci)))), fcls = B(2)(F(2)(ci)),

where δk is the kth element of the logit soft-max output and C(2),

B(2), and F(2) represent the classifier, bottleneck, and feature extrac-
tor at the second step, respectively.

Second, we calculate the distance between each class-invariant
feature vector fcls and the centroid, and assign the feature to the
domain with the closest centroid:

l̃i
d = argmin

k
Dist(fcls, μ̃k). (4)

Then, we can re-calculate the centroids and assign domain labels
based on the distance to different centroids:

μk =
∑ci∈Ctr I(l̃i

d = k)fcls

∑ci∈Ctr I(l̃i
d = k)

, (5)

li
d = argmin

k
Dist(fcls,μk),

Here, I(l̃i
d = k)is 1 when l̃i

d = k, otherwise it is 0.

The loss function for this step is composed of the class discrimi-
nator for adversarial learning and the domain classifier.

Llatent = E(c,a)∼Ptr�(l
′
d , ld)+ �(Adv(2)(B(2)(F(2)((c)))), lz), (6)

5.2.3 Learning Conditional Domain-Invariant Representa-
tions

Generating VR strokes from desktop strokes is a time series gen-
eration problem. The original DIVERSIFY [26] is for time series
classification. Thus, we embed an encoder-decoder structure, which
generates z vectors conditioning on [x,y, fxy] of a stroke. The output
of the whole generator can be represented as:

a = De(3)(B(3)(En(3)(c))), (7)

where a is {z, fz} (z vector in our work since we only generate z
this time), De(3), B(3), and En(3) are the decoder, bottleneck, and
encoder (Fig. 5-Step 3), respectively.

After obtaining the latent domain labels for each VR stroke in the
second step, this step aims to learn domain-invariant representations
and enable the trained encoder-decoder can generalize to unseen
distributions. To achieve this, we first use the feature extractor
trained in the first step as the encoder, which captures knowledge
in both domains and classes. Then, we utilize adversarial learning
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Figure 7: Comparison of our model with three baseline models RCGAN [11], TimeGAN [54], and SigCWGAN [31] trained with varying numbers of
VR strokes. Lower metric values indicate better performance.

Table 1: Comparison of our model with three baseline models RCGAN [11], TimeGAN [54], and SigCWGAN [31] trained with 3000 VR strokes.
Lower metric values indicate better performance. Boldface highlights the best results.

FD Hausdorff MMD linear MMD rbf MMD poly

RCGAN 0.021814 0.657808 0.003368 0.006400 0.001685
TimeGAN 0.020063 0.879646 0.008755 0.013145 0.002367

SigCWGAN 0.046372 0.993806 0.015546 0.030862 0.002329
Our Model 0.006323 0.551768 0.000272 0.000799 0.000160

to fool a domain discriminator Adv(3) that classifies domains. If
the discriminator cannot differentiate between features of strokes
from different latent domains extracted by the encoder, it indicates
that the encoder has successfully learned domain-invariant features
and bridged the distribution shifts among latent domains [13]. The
domain-invariant features capture characteristics of how users draw
VR strokes regardless of latent domains and thus allow decoders to
generate z vectors that preserve the characteristics.

The loss function of the domain discriminator Adv(3) is:

Ldomain = E(c,a)∼Ptr�(Adv(3)(B(3)(En(3)(c)), ld). (8)

5.3 Training Strategy
The training strategy of this network is relatively intricate. With the

loss functions Eq. 2 and Eq. 6, we first train the feature extractor F(1)

(becoming encoder En(3) later) in the first step and then train the

class discriminator Adv(2) and domain classifier C(2) in the second
step. Before proceeding with the third step in the generator, we train

the discriminator D (Fig. 4) because the decoder De(3) in the third
step is employed to deceive the discriminator D. To achieve this, we
first freeze the parameters in the generator G and update the weights
of the discriminator D. The employed loss function is as follows:

LD(G,D) =E(c,a)∼Ptr [logD(c,a)]+ (9)

E(c,a)∼Ptr [log(1−D(c,G(c)))]

We then go back to the third step of the generator G. We freeze
the model parameters of the discriminator D and use the trained
discriminator D to assess the results generated by the generator,
thereby obtaining the discriminator loss for the generator:

LG(G,D) = E(c,a)∼Ptr [log(1−D(c,G(c)))]. (10)

In addition, research [33] has indicated that incorporating an L2
loss into the generator’s loss function can enable the generator to
produce results that closely resemble the target:

LL2(G) = E(c,a)∼Ptr [(a−G(c))2]. (11)

Together with the loss of domain discriminator Adv(3), the final
loss function for the third step in the generator G is as follows:

L = LG(G,D)+LL2(G)+Ldomain. (12)

6 EXPERIMENTS AND EVALUATION

The section evaluates the effectiveness of the proposed method
based on real VR stroke datasets (Stage 1 in Fig. 4). We use the
3DMadLabSD VR dataset [16] in our experiments. Ten users drew

40 types of strokes ten times each, yielding a total of 4000 VR
strokes in this dataset. The 40 stroke types fall into four categories:
ten Arabic numerals (i.e., 0-9), ten English letters (i.e., a-j), ten basic
primitives (e.g., rectangles, circles, and arrows), and ten relatively
complex symbols (e.g., combinations of circles, triangles, and lines).
We perform data preprocessing and feature extraction based on these
raw VR strokes by following the steps mentioned in Sec. 3.1.

6.1 Evaluation Metrics
We assess whether the VR strokes generated from 2D strokes pre-
serve the characteristics of the real drawing trajectory of users in
VR environments. To achieve this, we use several common metrics
for GAN evaluation based on previous studies [29, 31, 54]. These
metrics include (1) Fréchet distance (FD), (2) Hausdorff distance,
and (3) Maximum mean discrepancy (MMD). The smaller these met-
rics, the better the performance of the time series generative model.
Specifically, Fréchet distance measures the distance between two
multivariate normal distributions and is commonly used to evaluate
the similarity between two datasets. Hausdorff distance calculates
the maximum distance between any point in one dataset and its
nearest point in the other dataset, which is often used to measure the
dissimilarity between two sets of points. Maximum mean discrep-
ancy measures the distance between two probability distributions.
We utilize three kernel functions in MMD computation: the linear,
RBF, and polynomial kernel.

6.2 Comparison to Baselines
Baselines. We consider three baseline models: RCGAN [11],
TimeGAN [54], and SigCWGAN [31]. They are all based on
GANs and tailored for time series generation. RCGAN [11] merges
recurrent neural networks with a conditional GAN framework.
TimeGAN [54] further refines this approach by incorporating a
time-series embedding to capture temporal dynamics effectively.
SigCWGAN [31] introduces signature transforms as a novel tech-
nique to model complex sequential properties. These models share
a common assumption: the training and testing datasets are drawn
from the same distribution. In contrast, our model is specifically
designed to deal with out-of-distribution samples, integrating mecha-
nisms to characterize latent distributions and learn domain-invariant
representations, which are absent in the baseline models.

Experiments. We aim to investigate two aspects. The first is
to assess the generalizability of our proposed model against the
three baselines. The second is to examine the influence of training
data size on model performance. To achieve these, we partition the
3DMadLabSD dataset [16] into training and testing data based on
stroke shapes. We ensure that shapes present in the testing data are
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Table 2: Abalation studies on output space discretization.

random class labels z vector cluster labels

FD 0.030495 0.006323
hausdorff 0.667595 0.551768

mmd linear 0.010434 0.000272
mmd rbf 0.020506 0.000799

mmd poly 0.001086 0.000160

Table 3: Abalation studies on the loss functions of the generator G.

LG(G,D) LL2(G) LG +LL2

FD 0.134043 0.013179 0.006323
hausdorff 1.121143 0.559428 0.551768

mmd linear 0.071677 0.000008 0.000272
mmd rbf 0.129512 0.001704 0.000799

mmd poly 0.006074 0.000285 0.000160

excluded from the training data, thereby guaranteeing different dis-
tributions necessary for assessing generalizability. Specifically, the
training data comprises strokes from English letters, basic primitives,
and relatively complex symbols, with 30 stroke types and 100 in-
stances each, totaling 3000 strokes. The testing data includes strokes
from Arabic numerals, with 10 stroke types and 100 instances each,
totaling 1000 strokes. To investigate the impact of training set size,
we construct three subsets from the training data by randomly sam-
pling 30, 50, and 70 instances from each stroke type, resulting in
subsets containing 900, 1500, and 2100 strokes, respectively. We
proceed to train our model and the baselines on these four training
sets with varying sizes (i.e., 900, 1500, 2100, and 3000 strokes) and
assess their performance using the same testing data of 1000 strokes.

Result analysis. Figure 7 illustrates the relationship between the
size of the training sets and model performance. Table 1 presents
the numerical results for the models trained with 3000 VR strokes.
Our model consistently outperforms the baselines across all metrics
and data sizes. This suggests that our model has a superior abil-
ity to generalize when confronted with out-of-distribution testing
data, synthesizing strokes that are closer to the target distributions.
Furthermore, a positive correlation between data size and model
performance is observed across all models, and our model exhibits
better robustness. The findings suggest that, while increasing dataset
size generally improves performance, our model requires less data to
learn distributions than baselines, offering an advantage in scenarios
where large VR datasets are not readily available.

6.3 Ablation Studies
We conduct ablation experiments to evaluate the impact of the out-
put space discretization and the loss functions. All the following
conditions take the 3000 strokes as training sets and the 1000 non-
overlapping strokes as testing sets, the same as Sec. 6.2.

Output space discretization. As detailed in Sec. 5.2.1, we dis-
cretize the output space by clustering z vectors and assigning each
vector a class label. To evaluate it, we perform a comparison exper-
iment where we assign random class labels to VR strokes without
considering their z vectors. As shown in Table 2 and Fig. 8-AB,
the results reveal that the standard model trained with class labels
based on z vector clusters outperforms the one with random class
labels. This suggests that incorporating the z vector clusters can aid
in characterizing latent domains and capturing relationships between
commonalities and additional dimensions.

Loss functions of the generator. As shown in Eq. 12, the loss
function of generator G contains a discriminator loss LG(G,D) and
a L2 loss LL2(G). We evaluate the impact of the two components
in aiding the model to learn the distributional characteristics of the
latent domains by removing each of them from the generator G’s
loss function. Table 3 and Fig. 8-ACD present the results of models

Figure 8: The t-SNE plots of testing results of models trained on
different conditions: (A) z vector cluster labels and LG(G,D)+LL2(G),
(B) random class labels and LG(G,D)+LL2, (C) z vector cluster labels
and LG(G,D), and (D) z vector cluster labels and LL2(G).

trained with LG(G,D)+LL2(G), only LG(G,D) and only LL2(G).
It is evident that the model’s performance noticeably decreases
when the discriminator loss or L2 loss is removed. This highlights
the crucial role of the combined discriminator loss and L2 loss in
training the generator.

7 APPLICATIONS

To evaluate the practical usefulness of our proposed method, we
use the generated VR stroke datasets (Stage 2 in Fig. 4) in two ap-
plications: VR stroke classification and VR stroke prediction. The
effectiveness of these applications can also showcase the perfor-
mance of our model in out-of-distribution generalization.

The development of each application takes a real VR stroke
dataset and a desktop dataset as input and involves three steps. First,
we train a generative model based on the real VR dataset (i.e., Stage
1 in Fig. 4). Second, we generate new VR strokes by using the
trained generator on the desktop dataset (i.e., Stage 2 in Fig. 4).
Third, we train VR stroke classifiers and VR stroke predictors on
the generated VR dataset with or without the real VR stroke dataset.

7.1 VR Stroke Classification
This application aims to classify Arabic digits (i.e., 0-9) drawn in
VR. From the 3DMadLabSD dataset [16], we have excluded 1000
Arabic digit strokes, utilizing the remaining 3000 strokes as the real
VR stroke dataset. The DigiLeTs [1] serves as the desktop stroke
dataset, comprising 380 instances for each digit. We first train our
proposed model (Fig. 4) with the 3000 real VR strokes. Once the
generative model is trained, we input instances from the DigiLeTs
dataset to obtain synthesized VR digits. Subsequently, we employ
both deep learning and template-based classifiers to understand how
they respond to synthesized VR digits as their training data.

For deep learning classifiers, we train three PointView-GCN [30]
classification models with three datasets: 800 real VR digits from
3DMadLabSD, 800 real VR digits plus 1600 synthesized VR digits,
and 1600 synthesized VR digits. Their accuracy on the remaining
200 real VR digits from 3DMadLabSD is 96.67%, 99.63%, and
84.07%, respectively. The results indicate that the synthesized VR
strokes can supplement real VR strokes and increase the accuracy
of deep learning classifiers. Moreover, the results showcase the
potential of our approach to alleviate the burden of collecting VR
data, because the model can achieve satisfactory accuracy by relying
solely on the synthesized datasets.

For template-based classifiers, we test the five algorithms men-
tioned in [32], which are designed for VR stroke classification. These
algorithms function by matching input data to a set of predefined
templates. We integrate the synthesized VR digits with 80 randomly
selected real VR digits from 3DMadLabSD, gradually increasing
the synthesized data quantity from 0 to 240 instances. As shown
in Fig. 9, adding synthesized VR strokes within a certain range im-
proves accuracy across these template-based classifiers. However, a
decrease in accuracy is observed when the amount of synthesized
data exceeds a threshold, particularly in the case of FreehandUni.
This decline may be attributed to the inherent limitations of template-
based classifiers. The increased variety brought by the synthesized
strokes presents a challenge to their matching capabilities, resulting
in less precise classification.
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Figure 9: The classification accuracy of five template-based stroke
classifiers [32] trained on different combinations of the real VR strokes
(r) and synthesized VR strokes (s).

7.2 VR Stroke Prediction
This application aims to predict the next VR stroke a user may want
to draw based on strokes s/he has already drawn, which can facilitate
VR creation in VR painting software. This application involves
sketches with multiple VR strokes but no such datasets are publicly
available. Thus, we collect a multi-stroke VR sketch dataset by
developing a VR drawing program with logging functions, which can
collect controllers’ movements with timestamps. With institutional
IRB approval, we invite ten users to draw ten sketches (e.g., cats, fish,
and envelopes) selected from QuickDraw [2], each ten times. The
desktop dataset used in this application is the corresponding ten types
of sketches in the QuickDraw dataset. We first train our generative
model (Fig. 4) based on our collected VR dataset, consisting of 1000
sketches. Then, we use the trained model and the desktop dataset to
generate 5000 instances for each sketch type.

We train a Compositional Stroke Embeddings (CoSE) models [3]
to perform stroke prediction. CoSE is an autoencoder model de-
signed for free-form sketches. It projects variable-length strokes
into a fixed-dimensional latent space, allowing a relational model
to capture the relationship between strokes and predict subsequent
strokes. Fig. 10-A and Fig. 11-A show successful examples of a cat
and an envelope predicted step by step by the CoSE models trained
on 5000 generated instances. Fig. 10-B and Fig. 11-B show failure
examples predicted by the CoSE models trained on 100 real sketches
collected from our users. The comparison demonstrates that our
approach can make the prediction task possible with synthesized VR
strokes, although the task is impossible with limited real VR strokes.

8 DISCUSSION

In this paper, we propose and evaluate a convenient, low-cost, and
scalable way to obtain diverse and large VR stroke gesture datasets
from desktop stroke gestures. This section discusses our reflections,
lessons learned, and limitations.

8.1 Reflections on the Use of VR and Desktop Datasets
Our proposed method relies on real VR and desktop stroke datasets
to generate VR stroke datasets. We reflect on how to effectively
collect and use these datasets in our method to benefit situations
when real VR data is scarce and desktop data is out-of-distribution.

Our method does not require collecting real VR and desktop
datasets under identical conditions thanks to its generalizability.
In our preliminary studies (Sec. 3), we analyze 3DMadLabSD VR
stroke dataset [16] and $1 desktop dataset [49]. Our findings suggest
that distribution shifts between VR and desktop datasets arise from
differences in shapes, speeds, and input devices. Additionally, the
two datasets were collected under varied conditions and setups, such
as different participant demographics and sensors, which also likely
contributed to the observed distribution shifts. In recognition of
these known and unknown factors, we do not explicitly divide real
VR stroke datasets into several domains based on any single factor
(e.g., shapes and users). Instead, we employ advanced mechanisms

to identify latent domains and learn domain-invariant representa-
tions (Sec. 5). Our method outperforms several baselines that lack
these mechanisms (Sec. 6). The proven effectiveness of our method
implies its generalizability and robustness even when the setups
are different when collecting real VR and desktop datasets. This
robustness enhances the applicability of our method, making it more
flexible in selecting desktop stroke datasets, which bring diversity
regarding commonalities.

A limited real VR dataset that is insufficient for concrete ap-
plications might be adequate for training our generative model.
One of our digit classifiers, trained solely with generated VR digits,
achieves an acceptable accuracy rate of 84.07% (Sec. 7.1). This
exemplifies an extreme use case where real VR datasets entirely lack
certain patterns. Specifically, the 3000 real VR strokes used to train
our generative model do not include digits 0-9. Yet, our method
can incorporate desktop digits to synthesize VR digits and enable
digit classification. Similarly, predictors trained on small, real VR
sketch datasets struggle to perform effectively. However, they deliver
satisfactory results when using larger synthesized sketch datasets
(Sec. 7.2). In summary, real VR stroke datasets, when limited in
diversity or quantity, might be unable to support concrete tasks like
VR stroke classification and prediction. Nonetheless, these limited
real VR datasets may be adequate for training our generative models.
Once trained, the generative models can utilize desktop datasets to
synthesize larger and more diverse VR strokes, thereby enabling
applications that are infeasible with the limited real VR dataset alone.
Though a larger real VR dataset would be ideal for generating bet-
ter VR strokes (Fig. 7), our method demonstrates the potential to
enhance the utility of limited real VR datasets beyond their initial
capabilities. It can reduce the burden of collecting extensive VR
datasets when resources and time are constrained.

The use of generated VR strokes in downstream applications
needs to consider the characteristics of specific algorithms. While
deep learning classifiers and predictors benefit from the inclusion
of generated VR strokes, we also observe a decline in performance
for template-based classifiers when the number of generated strokes
exceeds certain thresholds (Fig. 9). This underscores the importance
of not assuming a uniform benefit of generated VR strokes across
all algorithms. Instead, a crucial step is to first understand the
characteristics of specific algorithms, including their suitability for
large or small datasets, and their ability to handle diversity and
complexity. Moreover, to identify the point at which performance
begins to drop, it is necessary to experiment with varying quantities
of VR strokes fed into these specific algorithms. These help to ensure
that generated VR strokes are effectively and optimally utilized.

8.2 Lessons Learned for Other VR Interaction Data
We distill two lessons for future research to extend our work to
generate other types of VR interaction data with desktop data.

Identify appropriate commonalities and additional dimen-
sions for other types of interactions. To generate VR interaction
data with desktop data, the first step is to examine whether there
are commonalities and additional dimensions between them. Both
commonalities and additional dimensions can be explicit or implicit.
Explicit commonalities are the direct, measurable actions users un-
dertake, while implicit commonalities capture subtler indicators of
user actions, such as intention and emotional response. Explicit
additional dimensions involve obvious changes in VR, like head and
body movements, while implicit dimensions refer to more nuanced
changes, such as an enhanced presence. For instance, if future re-
search wants to generate scan paths for 360-degree images that are
not included in existing datasets [36], the commonalities could be
users’ attention, emotional responses, and points of interest within a
fixed viewport. The additional dimensions could be head movements
that connect the points of interest across all possible viewports in a
360-degree image.
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Figure 10: The prediction results of cat sketches. (A) Predicted strokes through stepwise iterations by the CoSE model trained on a large
generated VR dataset of cats. (B) Inferior results predicted by the CoSE model trained on the small real VR dataset of cats.

Figure 11: The prediction results of envelope sketches with CoSE
models trained on (A) the large generated VR dataset of envelopes,
and (B) the small real VR dataset of envelopes.

Pay attention to distribution shifts. Our study reveals that
distribution shifts exist between and within VR and desktop stroke
datasets. Future research on other types of VR interaction may
inspect whether distribution shifts also exist and adopt corresponding
solutions to address the challenges caused by the distribution shifts.
Specifically, distribution shifts require the models trained on VR
interaction datasets to be generalizable to desktop interaction data,
which are drawn from unseen distributions. Thus, the solutions may
consider incorporating and adapting out-of-distribution generation
techniques (Sec. 2.3) based on the data properties (e.g., images, time
series, or videos), especially selecting proper ways to characterize
the latent distributions and mitigate the distribution gaps.

8.3 Limitations and Future Work
While our approach is effective in generating VR strokes that benefit
different applications, we acknowledge some limitations and discuss
possible future work to address them.

Evaluation with datasets collected in diverse conditions. The
VR stroke datasets used in our evaluation only have positional fea-
tures (i.e., x, y, z coordinates) and timestamps. However, VR strokes
can encompass more complex features. For example, drawing sys-
tems like Tilt Brush and GravitySketch use the orientation (i.e., roll,
pitch, yaw) of the controllers to determine each stroke’s normal
and ruling directions. These orientations significantly influence the
naturalness and accuracy of VR drawings [34]. To generate VR
strokes with these features, a VR stroke dataset capturing controller
orientations, stroke normals, and ruling directions is essential. Ad-
ditionally, a desktop stroke dataset might be beneficial, recording
features like the tilt and rotation of a stylus pen, analogous to VR
controller orientations. Currently, the absence of publicly available
VR and desktop datasets with these features limits our ability to test
our generative models in these contexts. Nonetheless, once such VR
and desktop datasets become available, our models could be adapted
with minimal modifications to generate these features, enhancing
the realism and accuracy of VR stroke generation. Similarly, pre-
vious research [5] has pointed out that VR strokes collected under
different drawing conditions, such as plane settings (e.g., horizontal,
vertical, sideways) and visual guidance (e.g., none, stroke, surface,
combined), present different depth variations. Currently, we only
evaluate our proposed method with datasets of VR strokes drawn on
an imaginary vertical plane without visual guidance. However, once
VR stroke datasets collected under other conditions are available,
our proposed generative model can generate VR strokes that match
their distributions with no modifications.

Support for non-planar VR strokes. Our research primarily
focuses on planar VR strokes, typically drawn in 3D spaces but

representing 2D symbols or objects. While these strokes are common
in many applications [35, 47, 50], non-planar VR strokes [6, 8, 28]
also play a significant role in fields like industrial design [15, 56].
Unlike planar strokes where z values are regarded as inaccuracies or
deviations, non-planar strokes use z values to depict the volume [56]
or perspective [14] of an object. Thus, non-planar strokes treat z
values as part of target strokes, regardless of VR [27] or desktop [15]
stroke datasets. This means that our current network design is not
directly applicable to non-planar strokes, because z values are no
longer additional dimensions. However, our general idea, namely
identifying commonalities and additional dimensions and learning
their relationships in out-of-distribution settings, still applies. To
extend our model to generate non-planar VR strokes, future work
may propose novel reference frames by adopting concepts such
as gesture task axes [43] or scaffolds [51, 56], rather than using
the traditional Cartesian coordinate system. Then, future work can
consider commonalities and additional dimensions under the new
reference frames and modify our network design.

9 CONCLUSION

This paper has demonstrated the feasibility of using desktop strokes
as an alternative input source to enrich VR stroke datasets, as well
as the usefulness of the proposed method with two applications.
Specifically, we formulate the problem of generating VR strokes as
a conditional time series generation problem. Then, we propose a
two-stage method of first learning the relationships between com-
monalities and additional dimensions based on VR strokes and then
applying the learned relationships to desktop strokes. The generator
to learn the relationships consists of discretizing the output space,
characterizing latent domains, and learning conditional domain-
invariant representations. Taking stroke gestures as a starting point,
we believe our methods have much potential and deserve further
investigation for other types of interaction.
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